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Abstract

The instantaneous Bethe-Salpeter equation (Salpeter equation) for bound quark-

antiquark states is analysed and its relation to the RPA equations well-known

from nuclear theory is established. A numerical method to solve the Salpeter

equation is formulated and applied to a detailed study of light, heavy and heavy-

light meson mass spectra as well as electroweak decay widths. We �nd that the

results for the mass spectra are comparable to nonrelativistic results, whereas the

relativistic treatment leads to a striking improvement for the decay observables.
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Chapter 1

Introduction and overview

The quantitative description of hadronic states (mesons and baryons) is one of the

challenging tasks in todays physics research. Allthough the underlying quantum

�eld theory (i.e. quantum chromodynamics, QCD) is generally accepted to be

well established, up to now it is not possible to calculate hadronic properties from

this theory in an unambiguous and straightforward way, as in the case of QED.

This is mainly due to the fact that the high value of the QCD coupling constant

at low and intermediate energies prevents the use of perturbation theory. The use

of nonperturbative methods (e.g. lattice calculations), however, is very involved

and easily exceeds the available computer capacities.

An alternative approach to gain insight into the substructure of hadrons is

provided by the use of quark models. These models emphasize certain features

of the underlying �eld theory such as chiral symmetry, or they try to reproduce

experimental data and observations (such as con�nement) which usually can be

motivated, but not strictly derived from QCD. To achieve a quantitative descrip-

tion it is neccessary to use di�erent simpli�cations leading to the various quark

models with their speci�c merits and limitations. Generally these simpli�cations

are not easy to justify and limit the range where the models can be applied.

The most successfull model in describing the mass spectra of light and heavy

mesons and baryons is the nonrelativistic constituent quark model (see e.g. refs.[8,

5, 10, 53]). This model assumes nonrelativistic dynamics for the quarks and de-

scribes con�nement with a linearly rizing potential. Despite its ability to give a

good description for the hadron masses, the model fails to describe certain decay

observables such as weak decay constants and two-photon decay widths of light

mesons (see chapter 4). As shown in refs.[5, 53] the incorporation of relativistic

e�ects in the decay formulas already leads to some improvement for these de-

cays. This fact indicates that a relativistic treatment of the quark dynamics is

neccessary in order to obtain a better description of hadronic properties beyond

the mere reproduction of the mass spectra.

Unfortunately many relativistic quark models loose the ability to give a rea-

sonable overall �t for the meson and baryon mass spectra. E.g. the Nambu-Jona-
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Lasinio model completely ignores con�nement and thus is not able to describe

excited states, whereas in the bag model (which is especially designed to keep the

quarks con�ned) the problem of identifying spurious states spoils a reasonable

�t of hadron masses. One of the aims of this thesis is to formulate a relativistic

quark model that basically still has the advantages present in the nonrelativistic

treatment.

One of the �rst steps into this direction was made by Isgur and co-workers

[19]. In their work the nonrelativistic kinetic energy is 'relativized' by replacing

m+p

2

=(2m) ! ! =

p

p

2

+m

2

in the hamiltonian, and various relativistic e�ects

in the decay widths are parametrized by nonlocalities of the form m=!. Their

results are quite satisfying and show the importance of a relativistic description

especially for decay widths and form factors. However, this approach does not

have a clear �eld theoretical background and still parametrizes relativistic e�ects

within a nonrelativistic framework.

The basic equation to describe bound states in quantum �eld theory is the

Bethe-Salpeter (BS) equation which was �rst formulated in 1951 by Bethe and

Salpeter [58] and by Gell-Mann and Low [18]. In the following we will restrict

the discussion to q�q bound states. In momentum space the BS equation for these

states reads

�

P

(p) = S

F

1

(p

1

)

Z

d

4

p

0

(2�)

4

[�iK(P; p; p

0

)�

P

(p

0

)]S

F

2

(�p

2

)

=: S(p

1

; p

2

)

Z

d

4

p

0

(2�)

4

[�iK(P; p; p

0

)�

P

(p

0

)] (1.1)

where P is the 4-momentum of the bound state, p is the relative momentum of

the q�q-pair and p

1

= �

1

P + p; p

2

= �

2

P � p are the momenta of the quark and

the antiquark with �

1

; �

2

being two arbitrary real numbers satisfying �

1

+�

2

= 1.

For a given quark propagator S

F

and interaction kernel K the solution of this

equation yields BS amplitudes �

P

and masses P

2

= M

2

for the bound states

(note that for this purpose one also has to discuss the boundary conditions that

have to be respected by �

P

). The BS equation di�ers from the nonrelativistic

Schr�odinger equation given in momentum space by

E  (~p) =

~p

2

2m

 (~p) +

Z

d

3

p

0

(2�)

3

V (~p� ~p

0

) (~p

0

) (1.2)

in two ways.

� The BS equation depends on the relative energy p

0

of the quarks. In coordi-

nate space this corresponds to a dependence on two time variables t

1

; t

2

for

the quark and the antiquark which are neccessary to describe retardation

e�ects of the interaction.
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� Because of relativistic covariance the full Dirac structure is present in the

BS equation. This implies the existence of positive and negative energy

components for the quark and the antiquark in the BS amplitude.

The use of the exact BS equation given above is of rather limited practical value

in QCD. Firstly the quark propagator S

F

and the interaction kernelK are them-

selves unknown functions in QCD (given by an in�nite number of Feynman dia-

grams). Secondly the dependence on p

0

leads to di�cult principle and technical

problems concerning the analytic pole structure in p

0

and the highly nontriv-

ial numerical e�ort connected with these poles. Furthermore there is still the

problem to formulate appropriate boundary conditions for �

P

.

There is basically one case known (the so-called Wick-model [70, 13]) where

the BS equation can be reduced to a simple one-dimensional di�erential equation

which can be solved numerically. The Wick-model describes the interaction of

two massive scalar particles by the exchange of a scalar massless particle in the

ladder approximation. Already in this simple model some di�culties arize, e.g.

there exist solutions of the BS equation which in the nonrelativistic limit do not

converge to the corresponding solutions of the Schr�odinger equation.

For these reasons we will not treat the full BS equation as given above. Instead

we will apply the following approximations to avoid the problems stated above,

i.e.

� the full quark propagator will be replaced by the bare propagator with an

e�ective constituent quark mass,

� retardation e�ects in the interaction will be neglected (instantaneous ap-

proximation), so that the interaction kernel becomes independent of p

0

in

the CMS and can be written formally as a potential

K(P; p; p

0

)

�

�

�

P=(M;

~

0)

= V (~p; ~p

0

) (1.3)

The �rst approximation is consistent with the picture of a hadron mainly built

out of constituent quarks, analogously to the nonrelativistic ansatz. In a more

involved approach one could determine the quark propagators by solving the

Dyson-Schwinger equation with the same (instantaneous) interaction as in the BS

equation. This approach would allow to incorporate the spontaneous breaking of

chiral symmetry in the model, as shown in ref.[26].

The second approximation is motivated by the fact that very little is known

about the dynamical origin of the con�nement in QCD, so that introducing non-

instantaneous con�nement corrections into the formalism would be highly model

dependent. Therefore if an ad-hoc modelling of retardation must be done, ignor-

ing it altogether is probably the best choice at the moment [48]. It should be noted

that naive noninstantaneous extensions fail as has been shown by S.N.Biswas et

al. [6] for the harmonic oscillator BS-kernel V (x) = �bx

2

= b (~x

2

� (x

0

)

2

) that
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yields only a continuous spectrum. Similar results are to be expected for other

kernels like 1=q

4

. A more technical motivation for an instantaneous interaction

is the fact that the BS equation simpli�es considerably in this case since the

p

0

-dependence can be eliminated in the CMS, i.e.

Z

dp

0

�

P

(p) =

�

Z

dp

0

S(�

1

P + p; �

2

P � p)

�

(1.4)
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Z

d
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4

�
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�

Z
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0

�

P

(q)

� �

with P = (M;

~

0). The integral

R

dp

0

S(�

1

P +p; �

2

P �p) over the quark propaga-

tors can be computed analytically with the help of the residue theorem. De�ning

the Salpeter amplitude as �(~p) :=

R

dp

0

�

(M;

~

0)

(p) one thus obtains the Salpeter

equation [61]

�(~p) =

Z

d

3

p

0

(2�)

3

�

�

1

(~p) 

0

[(V (~p; ~p

0

)�(~p

0

)] 

0

�

+

2

(�~p)

M + !

1

+ !

2

�
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d

3
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(2�)

3

�

+

1
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0
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0

�
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2
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1

� !

2

(1.5)

with !

i

=

q

~p

2

+m

2

i

and the projection operators �

�

i

(~p) = (!

i

�H

i

(~p))=(2!

i

) on

positive and negative energies. Here H

i

(~p) = 

0

(~~p +m

i

) is the standard Dirac

hamiltonian and m

i

are the constituent quark masses.

The Salpeter equation is independent of p

0

, but still has the full Dirac struc-

ture including positive and negative energies for the quark and the antiquark. It

should be noted that the instantaneous ansatz for the interaction kernel can also

be formulated covariantly, as shown in chapter 2.

In the language of time-ordered perturbation theory an instantaneous inter-

action implies that quark and antiquark both move forward or backward in time

simultaneously, where the second possibility leads to the so-called Z-graphs [48],

see �g.1.1. The single Z-graphs, where only one particle moves back in time, do

not appear. Mathematically this leads to certain projection properties for the

Salpeter amplitudes which reduce the number of independant functions necces-

sary to describe a meson state. On the other hand the lack of single Z-graphs

prevents the Salpeter equation to approach the Dirac equation in the limit of one

very heavy and one light quark. However, it is not clear if this fact is relevant

for the case of q�q-states, since both equations neglect most of the inuence of

virtual particle-hole pairs, and it remains an open question which equation gives

the better approximation.

Because of the presence of double Z-graphs one cannot interprete the eigen-

states of the Salpeter equation as pure q�q-states. Instead the Salpeter equation

still permits any number of q�q-pairs to be present simultaneously in these states

(see ref.[15] where this is discussed in the context of the RPA equations). This is
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Figure 1.1: Time ordered diagrams with an instantaneous interaction represented

by the dashed lines. The �rst and the second diagram (double Z-graph) are taken

into account in the Salpeter equation, whereas the third diagram (single Z-graph)

is neglected.

in contrast to the reduced Salpeter equation (see chapter 2) and the Schr�odinger

equation where these graphs are neglected.

The Salpeter equation represents a step in between the full BS equation and

the nonrelativistic Schr�odinger equation. There exist some other ansatzes in the

literature to eliminate the p

0

-dependence in the BS equation. The resulting p

0

-

independent equations are usually called quasipotential equations. Examples are

the Blankenbecler-Sugar equation [7] which has been used as a basis for a quark

model by P.C.Tiemeijer and J.A.Tjon [66], the null-plane ansatz investigated by

A.N.Mitra et.al. [36] or the half-shell approach proposed by F.Gross [21]. The

Salpeter equation has the advantage that the instantaneous approximation used

there has an easy form and a clear physical interpretation, i.e. retardation e�ects

are neglected in the interaction.

The thesis is organized in the following way:

In chapter 2 it is shown that the Salpeter equation can be reformulated into

an eigenvalue equation for the mass M of the bound state, i.e.

H =M  (1.6)

with  = � 

0

and an operator H which is given explicitely in eq.(2.19). The BS

normalization condition for � motivates the de�nition of a scalar product h ; i

(or more precisely a bilinear form, since h ; i is not positive de�nit). It is shown

that H is hermitian with respect to this scalar product, which implies that M is

real if h ; i 6= 0, and that eigenfunctions for di�erent eigenvalues are orthogonal.

The detailed investigation of the structure of the Salpeter equation in chapter 2

shows that the solutions come in pairs  

1

; M and  

2

; �M , i.e. if  

1

is a solution

with eigenvalue M , then there exists a solution  

2

with eigenvalue �M , where

 

1

and  

2

can be related to each other by charge conjugation. Equivalently
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exchanging the partial amplitudes for positive and negative energies turns  

1

into  

2

and M into �M . With the help of this structure one can expand  in a

complete set of basis functions and rewrite the Salpeter equation into a matrix

equation which for a �nite basis can be solved numerically, where the variational

principle is used to optimize the basis functions.

Since a relativistic treatment is especially important for the calculation of

decay widths, it is briey outlined in chapter 2 how some decay widths of special

interest (i.e. weak decay constants, leptonic and two-photon decay widths) can

be calculated within the present framework. The corresponding formulas are

taken from the PhD thesis of Claus M�unz [37], where the calculation of decay

widths and form factors within the Salpeter approach is investigated in detail.

The calculated decay observables given in the present work have been obtained

using the formalism outlined there.

The structure for the Salpeter equation found in chapter 2 is well-known

from the RPA (random phase approximation) equations in many body theory.

In chapter 3 it is explicitely shown that the Salpeter equation and the RPA

equations have the same form. This is not surprising since the RPA equations

can be derived under the same assumptions that lead to the Salpeter equation,

i.e. free propagators and an instantantaneous interaction, as shown in detail in

chapter 3. The RPA equations show a typical doubling of the physical eigenvalues,

so that only half of the RPA eigenvalues can be identi�ed with the spectrum of

the underlying hamiltonian. Analogously only the positive mass solutions of the

Salpeter equation are of physical interest.

In chapter 4 an explicit quark model based on the Salpeter equation is pre-

sented and applied to calculate mass spectra and decay widths for light mesons.

Analogously to the nonrelativistic case con�nement is parametrized by a linearly

rizing potential with scalar or alternatively vector Dirac spin structure. In order

to describe the pseudoscalar mesons a residual interaction has to be added to

the con�ning potential. The usual choice for this residual interaction is the one-

gluon-exchange (OGE) as done e.g. by P.C.Tiemeijer and J.A.Tjon [66]. We do

not apply the OGE to the light mesons in this work, since it leads to degenerate

� and � meson masses in clear contradiction to experiment. Instead we will apply

an instanton induced interaction ('t Hooft interaction) as computed by 't Hooft

and others [24, 62, 49] which has the appropriate structure to describe the � and

the � masses simultaneously. A nonrelativistic version of this interaction has al-

ready led to good results for the meson and baryon mass spectra [8, 53, 10]. We

therefore feel encouraged to test this ansatz in the relativistic Salpeter framework.

It turns out that for a vector con�nement the parameters can be chosen such

that an excellent description of the light pseudoscalar and vector ground state

mesons is achieved including weak decay constants, leptonic and two photon

widths. The slope of the Regge trajectories comes out too small for this parameter

set (model V1 in chapter 4), but can be readjusted by changing the parameters

(model V2) with still moderate changes for the weak decay constants and the

6



two-photon widths. The leptonic widths, however, come out too large in this

case. A comparision with nonrelativistic results shows the striking improvement

for the weak decay constants and the two-photon widths due to the incorporation

of the full relativistic Dirac structure and the negative energy components. The

leptonic decay widths can already be described in the nonrelativistic approach.

A scalar con�nement does not give satisfying results. Instead it turns out

that for light mesons our numerical method does not lead to converging results

with positive meson masses, if the number of basis states is increased. This

is in agreement with recent results of J.Parramore and J.Piekarewic [48] who

carried out a detailed stability analysis for the Salpeter equation with a scalar

con�nement. Their investigation reveals the existence of imaginary eigenvalues,

which we expect to persist even for large values of the constituent quark mass.

Nevertheless for large enough quark masses this instability is in fact spurious

since in the nonrelativistic limit the Salpeter equation leads to the Schr�odinger

equation where such an instability does not exist. Consequently for higher quark

masses this instability will be relevant only for a dramatically increasing number

of basis states. Numerical solutions obtained with a smaller number of basis

states aquire a quasistable character, i.e. are almost independent of the exact

number of basis states taken into account.

In chapter 5 the heavy quarkonia (c�c and b

�

b) are investigated, where con-

�nement is parametrized in the same way as for the light mesons, and the OGE

interaction replaces the 't Hooft interaction. The OGE is the natural candidate

for heavy quarkonia, as is already motivated from the observed similarities of

the charmonium and bottomonium mass spectra with the spectrum of positro-

nium (for a more detailed discussion see the chapters 5 and 6). Reasonable �ts

to the experimental data can be obtained with a scalar as well as with a vec-

tor con�nement, which is in contrast to the nonrelativistic quark model where

a scalar con�nement is prefered. Some moderate deviations in the mass spectra

and especially in the leptonic decay widths, however, indicate the relevance of

retardation e�ects and higher order gluon diagrams in the interaction. It should

be noted that the instability of the Salpeter equation with a scalar con�nement

as discussed above is completely invisible here for any reasonable number of basis

states. We therefore think that it is legitimate to compare these (quasistable)

solutions to the experimental meson masses.

Finally the heavy-light (D and B -) mesons are investigated in chapter 6. To

achieve this aim a simultaneous �t of light and heavy mesons is obtained, where

the interaction kernel consists of a scalar plus vector con�nement and a residual

interaction, i.e. the 't Hooft interaction for light mesons and the OGE for heavy

and heavy-light mesons. The combination of a scalar plus vector spin structure

for the con�nement is enforced by the fact that a pure vector con�nement does

not give appropriate spin-orbit splittings in the mass spectra (especially for the

D-mesons), whereas a pure scalar con�nement leads to the discussed instability

of the solutions, especially for the light mesons. The obtained mass spectra have

7



a quality similar to results found within the nonrelativistic quark model, whereas

the results for the weak decay constants and the two-photon widths are much

better than the corresponding nonrelativistic results.

8



Chapter 2

Analysis of the instantaneous

Bethe-Salpeter equation

We investigate the structure of the instantaneous Bethe-Salpeter equation for q�q-

bound states in the general case of unequal quark masses and develop a numeri-

cal scheme for the calculation of mass spectra and Bethe-Salpeter amplitudes. In

order to appreciate the merits of the various competing models beyond the repro-

duction of the mass spectra, explicit formulas are given to calculate electroweak

decays [37]. This chapter is a slightly extended version of ref.[54]. The results for

an explicit quark model will be compared to experimental data in chapters 4, 5

and 6.

2.1 Introduction

Despite many e�orts the bound state problem of QCD is still far from being well

understood. One of the main tasks is to investigate the relevance of quarks as

dynamical degrees of freedom in hadronic bound states. Since a relativistic treat-

ment for the quarks in deeply bound states is essential, the Bethe-Salpeter(BS)-

equation [58, 18] provides a suitable starting point. Unlike in QED one cannot

use perturbation theory to obtain usefull approximations for the interaction ker-

nel in QCD. Therefore our knowledge of the interaction between quarks is still

quite fragmentary and various phenomenological alternatives have to be tested.

In the present work we will discuss to q�q-states. The use of general q�q-interaction

kernels depending on the relative time variable leads to serious conceptional and

practical problems [42, 43]. Furthermore a parametrization of con�nement in-

cluding retardation e�ects is still lacking. Therefore it is very usefull at this

point to make the simplifying assumption that the BS-kernel can be approxi-

mated by an e�ective interaction that is instantaneous in the rest frame of the

bound state. The BS-equation then reduces to the (full) Salpeter equation [61]

that has been investigated for q�q-states e.g. by Llewellyn Smith [31], Le Yaouanc
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and coworkers [71] and recently by Laga�e [29]. However, a detailed analysis of the

mathematical structure of this equation and its application to a comprehensive

study of mesonic states appears to be missing in the literature up to now.

The Salpeter equation represents a step in between the full four-dimensional

BS-equation and the Schr�odinger equation used in the nonrelativistic quark model

(see Fig.2.1). As will be shown in chapter 3 it corresponds to the random phase

approximation (RPA) equations known in many body physics. For low bind-

ing energies compared to the quark masses a further approximation would lead

from the Salpeter equation to the reduced Salpeter equation (compare Sec.2.3.1)

which corresponds to the Tamm-Danco� approximation (TDA). Applying the

nonrelativistic limit p=m � 1 to the reduced Salpeter equation �nally gives the

Schr�odinger equation. It is known [15] that the RPA still permits any number

of particle-hole pairs to be present simultaneously in the ground state and the

excited states, whereas the TDA has only one particle-hole pair present at any

instant of time. In that sense the Salpeter equation goes beyond the description

of a meson as a pure quark-antiquark state.

Bethe-Salpeter equation

Salpeter equation (RPA)

reduced Salpeter eq. (TDA)

Schroedinger equation

instantaneous approximation

free quark propagators

nonrelativistic approximation

small binding energies

Figure 2.1: The various approximations leading from the Bethe-Salpeter equation

to the Schr�odinger equation

In this chapter we analyze the properties of the Salpeter equation for the

general case of unequal quark masses in Sec.2.3. In Sec.2.4 we present a exible

numerical treatment of this equation based on the variational principle of ref.[29].

We use the block structure of the Salpeter amplitude to derive an expansion

in terms of a complete set of basis functions which leads to a matrix equation

10



analogous to the RPA equation. Our numerical method can be applied to a

wide class of phenomenological interaction kernels. In Sec.2.5 we show how to

reconstruct the full BS-amplitudes from the Salpeter amplitudes and present

formulas for the calculation of some decay observables within the Mandelstam

formalism including the decay �

0

! 2 (see ref.[37]). Concluding remarks are

given in Sec.2.6.

2.2 The Bethe-Salpeter equation

The BS-amplitude � for a fermion-antifermion bound state jP i is de�ned by

[�

P

(x

1

; x

2

)]

��

=

D

0

�

�

�T 	

�

(x

1

)

�

	

�

(x

2

)

�

�

� P

E

(2.1)

where P is the four-momentum of the bound state, T denotes the time ordering

for the fermion operators 	;

�

	, and �; � stand for spinor, avor and color indices.

The BS-equation for �

P

(x

1

; x

2

) reads

�

P

(x

1

; x

2

) =

Z

d

4

x

5

d

4

x

6

d

4

x

7

d

4

x

8

S

F

1

(x

1

� x

5

) [�iK(x

5

; x

6

; x

7

; x

8

)�

P

(x

7

; x

8

)]S

F

2

(x

6

� x

2

) (2.2)

also shown in graphical form in Fig.2.2. The interaction kernel K is given by the

sum of all q�q-irreducible Feynman diagrams and acts on � as

[K(x

5

; x

6

; x

7

; x

8

)�

P

(x

7

; x

8

)]

��

=

X

�

0

�

0

K(x

5

; x

6

; x

7

; x

8

)

��

0

;��

0

�

P

(x

7

; x

8

)

�

0

�

0

(2.3)

The BS-equation has �rst been derived by Bethe and Salpeter in 1951 [58], where

the propagator formalism of Feynman has been used. A more rigorous derivation

based on the operator formalism of quantum �eld theory has been given by Gell-

Mann and Low [18] in the same year (see also the text book of Lurie [33]).

For our purpose it is usefull to transform the BS-equation into momentum

space. Due to translational invariance the Fourier transformation of � and K

can be written as

�

P

(x

1

; x

2

) = e

�iPX

Z

d

4

p

(2�)

4

e

�ipx

�

P

(p)

K(x

1

; x

2

; x

0

1

; x

0

2

) =

Z

d

4

P

(2�)

4

Z

d

4

p

(2�)

4

Z

d

4

p

0

(2�)

4

e

�iP (X�X

0

)

e

�ipx

e

ip

0

x

0

K(P; p; p

0

) (2.4)

where x

1

= X+�

2

x; x

2

= X��

1

x with the conjugate momenta p

1

= �

1

P+p; p

2

=

�

2

P � p. Here �

1

; �

2

are two arbitrary real numbers satisfying �

1

+ �

2

= 1. The

BS-equation for �

P

(p) then reads

�

P

(p) = S

F

1

(p

1

)

Z

d

4

p

0

(2�)

4

[�iK(P; p; p

0

)�

P

(p

0

)]S

F

2

(�p

2

) (2.5)
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χχ = -iK

Figure 2.2: Graphical representation of the BS equation

Mathematically this equation is a homogeneous integral equation for the 4�4

matrix function �

P

(p) in the four variables p = (p

0

; ~p ). Furthermore the equation

depends on four parameters P = (P

0

;

~

P ). In order to obtain a discrete mass

spectrum P

2

=M

2

for the bound states one has to formulate boundary conditions

for �

P

such as the normalization condition given in sec.2.3.2.

If K is approximated by its lowest order contribution (ladder approximation)

the kernel is of the form

K(x

1

; x

2

; x

3

; x

4

) = K

L

(x

3

� x

4

) �(x

1

� x

3

) �(x

2

� x

4

)

() K(P; p; p

0

) = K

L

(p � p

0

) (2.6)

with K

L

(x

3

� x

4

) =

R

d

4

q=(2�)

4

e

�iq(x

3

�x

4

)

K

L

(q). In the present work the ladder

approximation (together with the subsequent instantaneous approximation) will

be used to incorporate the residual q�q-interactions, i.e. the one-gluon exchange

(OGE) for heavy quarkonia and D-mesons, and the 't Hooft interaction for the

light mesons.

2.3 General properties of the Salpeter equation

2.3.1 Formulating the Salpeter equation

For an interaction that is instantaneous in the rest frame of the bound state with

momentum P = (M;

~

0) the BS-kernel can be written in momentum space as

K(P; p; p

0

)

�

�

�

P=(M;

~

0)

= V (~p; ~p

0

) (2.7)

which can also be formulated in a covariant way [68] as

K(P; p; p

0

) = V (p

?

; p

0

?

) (2.8)

where p

?

= p � (Pp=P

2

)P is perpendicular to P . In practical calculations one

has to justify this ansatz a posteriori by investigating its consequences in the

framework of explicit models.
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Furthermore we will approximate the full quark propagators by free propa-

gators, i.e. S

F

i

(p

i

) � i (p

i

�m

i

+ i�)

�1

where m

1

and m

2

are interpreted as

e�ective masses for the quark and the antiquark. This approximation has been

criticized [9] because free propagators might be incompatible with a con�ning

kernel. On the other hand one can argue that this choice naturally leads to non-

relativistic potential models that have been applied successfully to heavy quarko-

nia (a recent model calculation is presented in [5], for an extensive review see

[32]). We thus feel that free propagators should be a reasonable e�ective param-

eterization at least for heavy quarks. It is still an open question whether free

propagators can also be applied to light quarks, and one has to investigate this

problem within explicit models.

With an instantaneous BS-kernel and free propagators with e�ective quark

masses one can perform the p

0

integrals in the BS-equation in the rest frame of

the bound state with mass M (see appendix A) and thus arrives at the (full)

Salpeter equation

�(~p) =

Z

d

3

p

0

(2�)

3

�

�

1

(~p) 

0

[(V (~p; ~p

0

)�(~p

0

)] 

0

�

+

2

(�~p)

M + !

1

+ !

2

�

Z

d

3

p

0

(2�)

3

�

+

1

(~p) 

0

[(V (~p; ~p

0

)�(~p

0

)] 

0

�

�

2

(�~p)

M � !

1

� !

2

(2.9)

with !

i

=

q

~p

2

+m

2

i

and the projection operators �

�

i

(~p) = (!

i

�H

i

(~p))=(2!

i

) on

positive and negative energies. Here H

i

(~p) = 

0

(~~p +m

i

) is the standard Dirac

hamiltonian. We also have introduced the Salpeter amplitude � by

�(~p) =

Z

dp

0

�

P

(p

0

; ~p)

�

�

�

P=(M;

~

0)

=

Z

d

3

x e

�i~p~x

h0j	(0; �

2

~x)

�

	(0;��

1

~x)jP i

�

�

�

P=(M;

~

0)

(2.10)

For weakly bound states with j~pj=m

i

� 1 and M � m

1

+m

2

one has

1

M + !

1

+ !

2

�

1

M � !

1

� !

2

(2.11)

so that the �rst term in eq.(2.9) can be dropped. This leads to the so called

reduced Salpeter equation, which has been used in various studies of relativistic

bound states (see e.g. the work of Gara et al. [17] and references therein). In the

case of light quarks, however, the use of the reduced Salpeter equation is dubious,

especially for deeply bound states like the pion. Quark models for light quarks

should therefore be based on the full Salpeter equation eq.(2.9).

Let �; � in eq.(2.1) refer to Dirac indices in the standard Dirac representation

of ref.[25]. Then � is a 4�4-matrix in spinor space that can be written in block

matrix form as

� =

 

�

+�

�

++

�

��

�

�+

!

(2.12)
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where each component is a 2�2-matrix. Applying �

�

1

(~p) from the left hand side

and �

�

2

(�~p) from the right hand side to the Salpeter equation leads to

�

+

1

(~p)�(~p) �

+

2

(�~p) = 0

�

�

1

(~p)�(~p) �

�

2

(�~p) = 0 (2.13)

These relations allow us to express �

+�

; �

�+

in terms of �

++

; �

��

as

�

+�

= +c

1

�

++

s� c

2

s�

��

�

�+

= �c

1

�

��

s+ c

2

s�

++

(2.14)

with the shorthand notation s = ~�~p ; c

i

= !

i

=(!

1

m

2

+!

2

m

1

). We thus �nd that

� can be written as

� =

^

� (�

++

;�

��

) (2.15)

with

^

� being a bilinear function. One can interpret �

++

as the upper component

and �

��

as the lower component of �, as can be seen in the nonrelativistic limit

where �

��

vanishes for solutions that ful�ll M � m

1

+ m

2

and where �

++

i�

2

becomes the usual Schr�odinger wave function.

For further discussion it is usefull to rewrite the Salpeter equation in the form

of an eigenvalue problem for the bound state mass M . We follow the treatment

of Laga�e [29] and de�ne

 (~p) := �(~p) 

0

(2.16)

[W (~p; ~p

0

) (~p

0

)] := 

0

[V (~p; ~p

0

)�(~p

0

)] (2.17)

The Salpeter equation can now be written as

(H )(~p) =M  (~p) (2.18)

where

(H )(~p) = H

1

(~p) (~p)�  (~p)H

2

(~p)

�

Z

d

3

p

0

(2�)

3

�

+

1

(~p) [W (~p; ~p

0

) (~p

0

)] �

�

2

(~p)

+

Z

d

3

p

0

(2�)

3

�

�

1

(~p) [W (~p; ~p

0

) (~p

0

)] �

+

2

(~p) (2.19)

The equivalence of eq.(2.18) and eq.(2.9) can be shown by applying the projectors

�

�

i

to both equations from both sides. From eq.(2.18) one obtains e.g.

�

+

1

(~p) (~p) �

+

2

(~p) = 0

�

�

1

(~p) (~p) �

�

2

(~p) = 0 (2.20)

as in eq.(2.13) due to the relation �

�

i

(~p) 

0

= 

0

�

�

i

(�~p). Note that eq.(2.20) can

also be written in the concise form

H

1

!

1

 +  

H

2

!

2

= 0 (2.21)
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2.3.2 Normalization condition and scalar product

The normalization for general BS-amplitudes has been given for bound states

with conserved quantum numbers by Nishijima [46] and Mandelstam [35]. We

follow Cutkosky [14], who treated the more general case where no current has

to be conserved. As this has already been treated within textbooks (e.g. [33]),

we will only give the result for the normalization. A more detailed discussion is

given in ref.[37].

Let the bound state be normalized as hP jP

0

i = (2�)

3

2P

0

�

3

(

~

P �

~

P

0

). Then

the normalization condition in graphical representation is given by Fig.2.3 (com-

pare e.g. [30]). Contracting with the momentum of the bound state, this reads

explicitly:

Z

d

4

p

(2�)

4

d

4

p

0

(2�)

4

tr

"

��

P

(p)P

�

d

dP

�

 

I(P; p; p

0

) + iK(P; p; p

0

)

!

�

P

(p

0

)

#

= 2iM

2

(2.22)

The summation over color indices is suppressed here. I denotes the product of

the inverse quark-propagators:

I(P; p; p

0

)

��

0

;��

0

= �

(4)

(p � p

0

) (2�)

4

S

F

1

�1

��

0

(�

1

P + p)S

F

2

�1

�

0

�

(��

2

P + p) (2.23)

Note that the vectorial condition of Fig.(2.3) and the scalar normalization (2.22)

are in fact equivalent which follows from: (a) the formal covariance of the equation

and (b) the fact that in the rest frame the time component of Fig.(2.3) gives

iK χ = 2 i P  µ+
dP
d

µ

-1

χ

Figure 2.3: The normalization condition

eq.(2.22) and the space components vanish, as the derivative d=(dP

i

)[I + K] is

proportional to p

i

; p

0

i

or 

i

so that the integrals or the trace on the rhs. of

eq.(2.22) give zero. For an interaction-kernel, which is instantaneous in the rest

frame, i.e. of the type of eq.(2.8), we have:

P

�

d

dP

�

V (p

?

; p

0

?

) = 0 (2.24)

so that the contributions of the interaction kernel to the normalization vanish. At

this point we would like to mention that the BS-equation and the normalization

condition for an instantaneous interaction may be formulated covariantly, so that

the corresponding amplitudes � are correctly normalized in any frame. The
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explicit normalization for the corresponding Salpeter amplitudes � [35, 61] will

be performed in the rest frame. First we de�ne the vertex functions:

�

P

(p) := [S

F

1

(p

1

)]

�1

�

P

(p) [S

F

2

(�p

2

)]

�1

�

�

P

(p) := [S

F

2

(�p

2

)]

�1

��

P

(p) [S

F

1

(p

1

)]

�1

(2.25)

With the BS equation (2.5) we then obtain the following important result:

�

P

(p)

�

�

�

P=(M;

~

0 )

= �(~p ) = �i

Z

d

3

p

(2�)

4

[V (~p; ~p

0

)�(~p

0

)] (2.26)

i.e. the vertex-function depends only on the relative three-momentum ~p. This

formula allows the reconstruction of the vertex function � and therefore of the

full BS-amplitude � from the Salpeter amplitude �. Inserting eq.(2.25) into the

normalization condition (2.22) the dependence on p

0

is completely determined by

the quark-propagators, so that the p

0

-integration may be performed analytically.

We use the general relation between the BS-amplitude � and it's adjoint ��

for spin-1/2-fermions (see e.g. [25] for the scalar case):

�(p) = �

1

2�i

Z

dq

0

 

f(q

0

; ~p )

p

0

� q

0

+ i�

+

g(q

0

; ~p )

p

0

� q

0

� i�

!

(2.27)

��(p) = �

1

2�i



0

Z

dq

0

 

f

y

(q

0

; ~p )

p

0

� q

0

+ i�

+

g

y

(q

0

; ~p )

p

0

� q

0

� i�

!



0

with matrix valued functions f and g. From this we derive the following relations

in the special case of an instantaneous interaction:

�

�(~p ) = �

0

�

y

(~p ) 

0

�

�(~p ) = 

0

�

y

(~p ) 

0

(2.28)

This leads to the normalization condition for the Salpeter-amplitudes in the rest

frame:

Z

d

3

p

(2�)

3

tr

n

�

y

(~p )�

+

1

(~p )�(~p )�

�

2

(�~p )� �

y

(~p )�

�

1

(~p )�(~p )�

+

2

(�~p )

o

= (2�)

2

2M

(2.29)

It also may be expressed in terms of the 2�2 amplitudes �

++

and �

��

de�ned

in eq.(2.12) as:

Z

d

3

p

(2�)

3

2!

1

!

2

!

1

m

2

+ !

2

m

1

tr

(

(�

++

(~p ))

y

�

++

(~p )� (�

��

(~p ))

y

�

��

(~p )

)

= (2�)

2

2M

(2.30)

This form also shows the connection to the nonrelativistic norm: in the NR limit

�

++

(~p ) i�

2

becomes the usual Schr�odinger wave function and �

��

(~p ) goes to

zero as ~p

2

=m

2

��

++

(~p ). Furthermore the weight function becomes equal to unity

so that we obtain the usual Schr�odinger normalization. For deeply bound states
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however we have appreciable deviations from this norm, as the lower amplitude

�

��

is of the same order as the upper component �

++

(see Sec.2.3.3).

Eq.(2.29) motivates the de�nition of a scalar product for amplitudes  

1

=

�

1



0

and  

2

= �

2



0

as

h 

1

j 

2

i =

Z

tr

�

 

y

1

�

+

1

 

2

�

�

2

�  

y

1

�

�

1

 

2

�

+

2

�

=

1

2

Z

tr

�

 

y

1

�

H

1

!

1

 

2

�  

2

H

2

!

2

��

(2.31)

with all quantities depending on ~p and the notation

R

=

R

d

3

p=(2�)

3

. Note that

this scalar product is not positive de�nite. The normalization condition (2.29)

for solutions of the Salpeter equation is then given as

h j i = (2�)

2

2M (2.32)

The following discussion will be restricted to amplitudes satisfying eq.(2.21). In

that case one has

h 

1

jH 

2

i =

Z

(!

1

+ !

2

) tr

�

 

y

1

 

2

�

�

Z Z

0

tr

�

 

y

1

W 

0

2

�

(2.33)

where the prime indicates the dependence of  

2

on ~p

0

. If one considers kernels

that ful�ll

R R

0

tr ( 

y

1

W 

0

2

) =

R R

0

tr ( 

y

2

W 

0

1

)

�

, which is valid for a wide class of

interactions (e.g. for W 

0

= f ((~p� ~p

0

)

2

) �

1

 (~p

0

) �

2

with hermitian matrices �

i

and a scalar function f), the Salpeter hamiltonian H is selfadjoint with respect

to the scalar product given in eq.(2.31), i.e.

h 

1

j H 

2

i = hH 

1

j 

2

i (2.34)

This has two important consequences, namely

� bound state masses M are real for eigenfunctions  with nonzero norm

h j i 6= 0

� amplitudes  

1

and  

2

corresponding to di�erent eigenvalues M

1

6=M

�

2

are

orthogonal, i.e. h 

1

j 

2

i = 0

The �rst point can be seen easily from M h j i = h jH  i = hH j i =

M

�

h j i and the second follows fromM

2

h 

1

j 

2

i = h 

1

jH  

2

i = hH 

1

j 

2

i =

M

�

1

h 

1

j 

2

i.

2.3.3 Structure of the Solutions

The Salpeter equation exhibits some further general structures connecting solu-

tions with positive and negative eigenvalues. For the case of equal quark masses
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J.F. Laga�e [29] has shown that for kernels satisfying (W )

y

= W 

y

the eigenval-

ues will come in pairs of opposite sign, the corresponding eigenfunctions having

normalizations with opposite sign. In the following we will extend this result

to the general case of unequal quark masses and compare the block structure of

the conjugate solutions. We further show that nondegenerate bound states with

mass M = 0 have zero norm h j i = 0. The discussion of physical acceptable

solutions is postponed to the end of this section.

To deal with the unequal mass case we �rst investigate the structure of the

BS-equation under charge conjugation. The details are shown in the appendix

with the result that solutions of

(H

f

1

f

2

 

f

1

f

2

)(~p) =M  

f

1

f

2

(~p)

(H

f

2

f

1

 

f

2

f

1

)(~p) =M  

f

2

f

1

(~p) (2.35)

are related through

 

f

1

f

2

(~p) = �S

C

t

 

f

2

f

1

(�~p)S

C

(2.36)

with S

C

given in eq.(B.25) in the appendix. The indices of H denote the avor

dependence of H

i

and �

�

i

in eq.(2.19). For simplicity only the case without avor

mixing is considered, the generalization being straightforward.

In the following discussion we will assume that the BS-kernel satis�es the

relation (W

f

1

f

2

 

0

f

1

f

2

)

y

= W

f

2

f

1

( 

0

f

1

f

2

)

y

, which is ful�lled e.g. for kernels of the

form

W

f

1

f

2

 

0

f

1

f

2

= f

�

(~p� ~p

0

)

2

�

� 

f

1

f

2

(~p

0

) � (2.37)

with a hermitian matrix �. The hermitian conjugate of eq.(2.18) thus leads to

� (H

f

1

f

2

 

f

1

f

2

)

y

= H

f

2

f

1

 

y

f

1

f

2

= �M

�

 

y

f

1

f

2

(2.38)

Renaming f

1

$ f

2

and comparing this equation to eq.(2.35) we thus have shown

that

� solutions of the Salpeter equation come in pairs ( 

f

1

f

2

; M) and ( 

y

f

2

f

1

; �M

�

)

where eq.(2.36) connects the two solutions.

Consider the normalization of  

f

1

f

2

and  

y

f

2

f

1

: With eq.(2.36) and the relation

S

C

�

�

i

(~p)S

C

=

t

�

�

i

(�~p) one �nds h 

f

2

f

1

j 

f

2

f

1

i

f

2

f

1

= h 

f

1

f

2

j 

f

1

f

2

i

f

1

f

2

where the

indices of the scalar product determine the avors of �

�

1

and �

�

2

in eq.(2.31). On

the other hand cyclic permutation under the trace shows that h 

A

f

2

f

1

j 

B

f

2

f

1

i

f

2

f

1

=

�h( 

B

f

2

f

1

)

y

j ( 

A

f

2

f

1

)

y

i

f

1

f

2

so that we have

h 

f

1

f

2

j 

f

1

f

2

i

f

1

f

2

= �h 

y

f

2

f

1

j 

y

f

2

f

1

i

f

1

f

2

(2.39)

and we �nd that

� the states with eigenvalues M and �M

�

have opposite norm.
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Let us now compare the block matrix structure of the two conjugated solu-

tions. With the angular momentum decomposition eq.(B.15) (see appendix)

�

++

(~p) =

X

LS

R

(+)

LS

(p) [Y

L

(


p

)
 '

S

]

J

�

��

(~p) =

X

LS

R

(�)

LS

(p) [Y

L

(


p

)
 '

S

]

J

(2.40)

with the 2�2-matrices '

00

= 1=

p

2; '

1 q

= �

q

=

p

2 it is straightforward to show

that

�

�

�

++

f

2

f

1

�

JM

J

�

y

= (�1)

�J�M

J

X

LS

(�1)

L+S

h

R

(+)

LS

(p)

i

f

2

f

1

[Y

L

(


p

)
 '

S

]

J

�M

J

(2.41)

and similarly for �

��

. It is shown in appendix B.4 that

[R

(+)

LS

(p)]

f

2

f

1

= (�1)

L+S

[R

(+)

LS

(p)]

f

1

f

2

(2.42)

Since L and S are integer the phase vanishes and we obtain the result

�

�

�

++

f

2

f

1

�

JM

J

�

y

= (�1)

�J�M

J

�

�

++

f

1

f

2

�

J �M

J

(2.43)

According to eqs.(2.15),(2.16) we write

 

y

f

2

f

1

= 

0

h

^

�

f

2

f

1

(�

++

f

2

f

1

; �

��

f

2

f

1

)

i

y

(2.44)

where the indices of

^

� indicate the avor dependence of c

i

in eq.(2.14). The

hermitian conjugate of eq.(2.20) with f

1

and f

2

interchanged gives �

+

f

1

 

y

f

2

f

1

�

+

f

2

=

0 and �

�

f

1

 

y

f

2

f

1

�

�

f

2

= 0 so that we can write

 

y

f

2

f

1

=

^

�

f

1

f

2

�

�

++

f

1

f

2

; �

��

f

1

f

2

�



0

(2.45)

with some amplitudes �

++

; �

��

that can be determined by comparing eq.(2.45) to

eq.(2.44) with the result (�

++

f

1

f

2

)

JM

J

= �[(�

��

f

2

f

1

)

JM

J

]

y

= (�1)

1�J�M

J

(�

��

f

1

f

2

)

J �M

J

and the same expression with ++ and �� interchanged. According to eq.(2.45)

we therefore �nd

�

 

JM

J

f

2

f

1

�

y

= (�1)

1�J�M

J

^

�

f

1

f

2

�

�

�

��

f

1

f

2

�

J �M

J

;

�

�

++

f

1

f

2

�

J �M

J

�



0

(2.46)

We thus have the result that

� exchanging the functions �

++

and �

��

in � =

^

� (�

++

;�

��

) turns an

amplitude with eigenvalue M into an amplitude with eigenvalue �M

�

.
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With the relations obtained above it is easy to investigate the eigenvalue

M = 0 which is assumed to be not degenerate apart from the trivial degeneracy

in the angular momentum projection M

J

. From eqs.(2.35),(2.38) we have

H

f

1

f

2

 

f

1

f

2

= 0 H

f

1

f

2

 

y

f

2

f

1

= 0 (2.47)

which through eq.(2.46) implies ( 

JM

J

f

2

f

1

)

y

= � 

J �M

J

f

1

f

2

with j�j = 1. Then eq.(2.39)

gives

D

 

JM

J

f

1

f

2

�

�

� 

JM

J

f

1

f

2

E

f

1

f

2

= �

�

�

 

JM

J

f

2

f

1

�

y

�

�

�

�

�

 

JM

J

f

2

f

1

�

y

�

f

1

f

2

= �

D

 

J�M

J

f

1

f

2

�

�

� 

J�M

J

f

1

f

2

E

f

1

f

2

(2.48)

Since the scalar product is invariant under rotations one can substitute �M

J

by

M

J

and obtains

D

 

JM

J

f

1

f

2

�

�

� 

JM

J

f

1

f

2

E

f

1

f

2

= 0 (2.49)

So we �nd that

� nondegenerate eigenfunctions with eigenvalue M = 0 have zero norm.

From eq.(2.46) it is clear that ( 

JM

J

f

2

f

1

)

y

= � 

J �M

J

f

1

f

2

is equivalent to setting

�

++

= ��

��

(2.50)

This equation illustrates a common aspect of the Salpeter equation: in the non-

relativistic limit withM � m

1

+m

2

the large component �

++

dominates over the

small component �

��

, but if one goes to deeply bound states (e.g. by increasing

the coupling constant of an attractive interaction) the two components become

more and more equal until �nally �

++

= ��

��

is achieved for M = 0.

From the discussion above it has become clear that we have to identify the

physically acceptable solutions. There are two criteria making sure that a solution

is acceptable:

� The norm of the solution has to be nonzero which automatically implies

that M is real.

� The eigenvalue M and the norm have to be positive in order to ful�ll the

normalization condition h j i = (2�)

2

2M .

We would like to mention that the typical doubling of the physical eigenvalues

is well known from the RPA equations in nonrelativistic many particle theory

[56]. For a hamiltonian H with spectrum E

n

the RPA equations have solutions

E

n

; �E

n

. This doubling can be traced back to the appearance of the time or-

dering operator T in the de�nition of the particle-hole propagator. Therefore

neglecting negative mass eigenvalues is consistent with the RPA structure of the

Salpeter equation (compare chap.2.4).
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The role of the solutions withM = 0 and h j i = 0 is not clear. On one hand

there is a priori no contradiction with the normalization condition. On the other

hand the Salpeter equation has been obtained in the rest frame of the bound state,

i.e. one �rst performs the limit

~

P ! 0 and then investigates the case M ! 0.

However, the correct procedure for massless bound states is �rst to perform the

limit M ! 0 in the BS-equation. In the resulting equation one then can study

the limit

~

P ! 0. It cannot generally be expected that exchanging the limits for

~

P

and M leads to equivalent results (compare [31] for a more detailed discussion of

this problem). Furthermore the de�nition of the instantaneous interaction kernel

eq.(2.8) becomes dubious since p

?

is not well de�ned for P ! 0. We therefore

prefer to require M > 0 and h j i > 0 for physically acceptable solutions.

2.4 Numerical treatment

From the de�nition of

^

� in eq.(2.15) it is easy to derive a basis expansion for

 = �

0

. Let

E

i

(~p) = R

n

i

L

i

(p) [Y

L

i

(


p

)
 '

S

i

]

J

M

J

(2.51)

be a complete set of 2�2 basis functions with real radial functions R

n

i

L

i

(p). The

basis functions are chosen orthonormal with respect to the usual scalar product

given by

(E

i

jE

j

) =

Z

d

3

p

(2�)

3

tr

h

E

+

i

(~p)E

j

(~p)

i

= �

ij

(2.52)

where the trace just gives the usual scalar product for the spin matrices

tr'

+

SM

S

'

S

0

M

0

S

= �

SS

0

�

M

S

M

0

S

. Note that the angular structure of the basis functions

matches the structure of �

++

and �

��

as given in eq.(B.15). We choose R

n

i

L

i

(p)

to be real functions. It is now possible to expand

�

++

(~p) =

1

X

i=1

a

(+)

i

E

i

(~p) (2.53)

�

��

(~p) =

1

X

i=1

a

(�)

i

E

i

(~p) (2.54)

which impliesR

(�)

LS

(p) =

P

1

i=1

a

(�)

i

R

n

i

L

i

(p) �

LL

i

�

SS

i

for the radial wave function.

Since R

(�)

LS

(p) are real functions in most cases of interest, the coe�cients a

(�)

i

then also have to be real. Now de�ne the 4�4-amplitudes

e

(+)

i

=

^

� (E

i

; 0) 

0

e

(�)

i

=

^

� (0; E

i

) 

0

(2.55)

Note that these functions are not orthogonal with respect to the scalar product

given in eq.(2.31). Since

^

� is bilinear we nevertheless can expand  as

 =

1

X

i=1

�

a

(+)

i

e

(+)

i

+ a

(�)

i

e

(�)

i

�

(2.56)
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so that the constraint �

+

1

 �

+

2

= �

�

1

 �

�

2

= 0 is automatically ful�lled. The

Salpeter equation H =M can now be written as the matrix equation

 

H

++

H

+�

H

�+

H

��

! 

a

(+)

a

(�)

!

=M

 

N

++

N

+�

N

�+

N

��

! 

a

(+)

a

(�)

!

(2.57)

with H

ss

0

ij

= he

(s)

i

jH e

(s

0

)

j

i and N

ss

0

ij

= he

(s)

i

je

(s

0

)

j

i. From the de�nition of the

scalar product one easily sees that N

++

= �N

��

and N

+�

= N

�+

= 0.

Furthermore we �nd from eqs.(2.46),(2.55) that e

(+)

i

and e

(�)

i

are connected by

[(e

(+)

i

)

JM

J

f

1

f

2

]

y

= (�1)

1�J�M

J

(e

(�)

i

)

J �M

J

f

2

f

2

so that we can use eqs.(2.38),(2.39) as well

as the invariance of the scalar product under avor exchange and under the re-

placement �M

J

! M

J

to obtain H

��

ij

= (H

++

ij

)

�

and H

�+

ij

= (H

+�

ij

)

�

. The

matrix representation of the Salpeter equation thus takes the form

 

H

++

H

+�

(H

+�

)

�

(H

++

)

�

! 

a

(+)

a

(�)

!

=M

 

N

++

0

0 �N

++

! 

a

(+)

a

(�)

!

(2.58)

which is of the same form as the well-known RPA equations in nuclear physics [56].

Let (a

(+)

; a

(�)

) be an eigenvector with eigenvalue M . Then eq.(2.58) shows that

((a

(�)

)

�

; (a

(+)

)

�

) is an eigenvector with eigenvalue �M

�

which is just the result of

the previous section. Usually the Salpeter hamiltonian H has the property that

the matrix elements H

ss

0

ij

and also the eigenvector coe�cients a

(�)

i

are real within

the basis given above. In that case and since N

ss

0

ij

is real, also M must be real.

This result has already been shown before for eigenvectors with nonzero norm.

Furthermore we see that if M = 0 is an eigenvalue we expect from eq.(2.58)

that the eigenvector ful�lls a

(+)

= �a

(�)

and we reobtain the result that this

solution has zero norm.

In a numerical treatment only a �nite basis i � i

max

� 10 can be taken into

account. Then eq.(2.58) becomes a �nite matrix equation that can be solved with

standard numerical methods. One thus obtains an approximate eigenvalue M

�

and an approximate eigenfunction  

�

to the Salpeter equation that exactly ful�ll

the relation

h 

�

jH 

�

i =M

�

h 

�

j 

�

i (2.59)

The index � indicates that the basis states E

i

and thus  

�

may depend on a

(variational) parameter � of dimension MeV

�1

that sets the absolute scale for

the momentum dependence via E

�

i

(~p) = �

3=2

E

�=1

i

(~p�).

For solutions of nonzero norm we require

�M [ ] = �

h jH i

h j i

= 0 (2.60)

in analogy to the Ritz' variational principle, where the variation � is taken over

all functions  with nonzero norm that ful�ll �

+

1

 �

+

2

= �

�

1

 �

�

2

= 0. According

to eq.(2.59) we make the variational ansatz  =  

�

implying M [ 

�

] = M

�

and
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look for stationary points of M

�

as a function of � (which also �xes � for each

meson). The calculation of the matrix elements within an explicit model is given

in appendix D.2. At this point we would only like to make a few technical com-

ments. The matrix elements of the interaction kernel can be e�ciently calculated

by inserting two complete sets of basis functions written schematically as

hi j f

1

(~p)V (r) f

2

(~p

0

) j ji =

X

g;h

hi jf

1

(~p)j gi hg jV (r)j hi hh jf

2

(~p

0

)j ji (2.61)

so that V (r) can be parameterized in coordinate space. A suitable choice for

the basis functions is given by the functions R

nL

(y) = N

nL

y

L

L

2L+2

n

(y) e

�y=2

with

y = p� and L

2L+2

n

(y) being a Laguerre polynomial. We found that about ten basis

states are su�cient to solve the Salpeter equation with rather high accuracy. The

choice of 3-dimensional harmonic oscillator functions is less favored since their

asymptotic behavior � e

�y

2

=2

for y !1 turns out to be not appropriate for our

quark model (especially for deeply bound states like the pion).

2.5 Decay observables

Apart from describing the mass spectrum of mesons, any realistic model must

also be able to describe mesonic transitions and decays. The important question

arises whether a good description of the extremely deeply bound states as the

pion or the kaon can be combined with a reasonable description of con�nement,

i.e. is compatible with the spectrum of higher excited states and states with

higher angular momenta. The Salpeter formalism o�ers a natural framework,

as the role of the lower component of the wave function turns out to be crucial

for the correct normalization and calculation of the decays. This can be seen

most clearly in the following formulas for the leptonic decays and the weak decay

constants. For a detailed derivation of the decay formulas see ref.[37].

2.5.1 Leptonic decay width and weak decay constant

The transition or decay of bound states are calculated from BS amplitudes using

the formalism given by Mandelstam [35]. We will merely sketch it by considering

�rst the leptonic decays of vector mesons. The corresponding Feynman diagram is

given by Fig.2.4. Considering only graphs of leading order in the electromagnetic

coupling constant we obtain the approximation on the right hand side.

The exceptional role of these decays (together with the weak decay constants)

is that if the BS kernel would be exact also the decay amplitudes would be correct

to any order in the strong interaction. The hadronic part of the transition matrix

element is given by [33]:

h 0 j j

�

(0) j (M;

~

0) 1

�

i = �tr

�



�

�

(M;

~

0)

(x = 0)

�

= �

Z

d

3

p

(2�)

4

tr (

�

�(~p)) (2.62)
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χ
=

ρ,φ,ω

e e- +

Figure 2.4: Leptonic decays in the Mandelstam formalism up to lowest order in

the electromagnetic coupling constant

The instantaneous approximation thus simply�es this calculation, as one can

express the transition in terms of the Salpeter amplitude �. The integration and

trace in eq.(2.62) for the current pick up only the s-wave amplitude. The usual

spin summation and averaging leads to the decay width:

�(1

�

! l

+

l

�

) = 24

�

2

~e

2

q

M

3

�

�

�

�

�

Z

p

2

dp

(2�)

3

�

R

(+)

01

(p) �R

(�)

01

(p)

�

�

�

�

�

�

2

(2.63)

where � = 1=137 is the electromagnetic coupling constant and ~e

q

is the quark

charge in units of the electron charge. Note that the lower component is evidently

very important here (remember that it also inuences the absolute values of the

decay widths by entering in the normalization eq.(2.30)). For M we use the

experimental meson mass to obtain the correct phase space.

The next observables considered are the weak decay constants f

�

and f

K

.

They are de�ned by the matrix element of the axial current [41] (with this de�-

nition f

(exp)

�

= 132 MeV):

i f

�

P

�

=

D

0

�

�

� j

5

�

(0)

�

�

� P 0

�

E

(2.64)

Again for an instantaneous interaction this can be evaluated from the Salpeter

amplitude

f

�

=

�

�

�

�

�

p

3

M

Z

d

3

p

(2�)

4

tr (�(~p )
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and in terms of the �
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2.5.2 The decay �

0

; � ! 2

These decays provide another test for the description of the low lying pseudoscalar

mesons. To our knowledge they have not been calculated in the framework of the

full Salpeter equation (for a slightly more restricted ansatz see Mitra et al. [36]).

The basic idea here is to reconstruct the vertex function � from the Salpeter

amplitude � by means of the BS-eq.(2.26) itself, which gives the full fourdimen-

sional structure of the BS amplitude �. This has to be taken into account for

a correct description of decays. The corresponding Feynman diagrams for the

neutral pseudoscalar decay in lowest order of the interaction are given in Fig.2.5.

Of course this is not correct to any order in the strong interaction like e.g. in

πχ πχ
= +

π

γ γ

Figure 2.5: The decay �

0

; � ! 2

the case of the pion decay constant, as we obviously neglect the strong interac-

tion of the intermediate quark. Therefore we expect these calculations to be less

accurate.

The lengthy calculation of the corresponding decay width can be found in

ref.[37] and will therefore not be given here.

2.6 Conclusion

In the present chapter we have investigated the structure of the instantaneous

BS-equation (Salpeter equation) for the general case of unequal quark masses.

Furthermore we have developed a numerical scheme to solve the Salpeter equation

which enables the calculation of mass spectra and Salpeter amplitudes. In order

to test various models beyond the mere reproduction of the mass spectra, we

have further given explicit formulas for the computation of weak meson decay
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constants (f

�

; f

K

etc.), the decay widths into two photons and into an electron-

positron pair.

Because of the relativistic kinematics, the correct relativistic normalization

of the amplitudes and the dynamical treatment of the lower component �

��

we

expect the Salpeter equation to provide a framework for quark models that is

superior to other treatments like the reduced Salpeter equation or the nonrela-

tivistic quark model. After a discussion of its relation to the RPA equations of

many body theory in the chapter 3, we will investigate an explicit quark model

based on the Salpeter equation in chapters 4, 5 and 6.
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Chapter 3

Salpeter equation and RPA

equations

We give a derivation of the particle-hole RPA equations for an interacting multi-

fermion system by applying the instantaneous approximation to the amputated

two-fermion propagator of the system. In relativistic �eld theory the same ap-

proximation leads from the fermion-antifermion Bethe-Salpeter equation to the

Salpeter equation. We show that RPA equations and Salpeter equation are indeed

equivalent. This chapter is a slightly modi�ed version of ref.[55].

3.1 Introduction

In the study of systems of many interacting fermions one �nds that methods

used in relativistic �eld theory usually correspond to approximations well-known

in nonrelativistic many-particle theory. An interesting example is the correspon-

dence of the Hartree-Fock approximation and the so-called Gap-equation used

e.g. in the Nambu-Jona-Lasinio model [44], which both give the lowest approxi-

mation for the interactions in many-body problems. An improvement is obtained

by including correlations in the excited states as well as the ground state of

the system. In nonrelativistic many-body theory this leads to the particle-hole

Random-Phase-Approximation (RPA) equations.

The RPA equations have been derived by various methods (see e.g. ref.[56]).

The most systematic approach is the Green's function method, especially in view

of possible generalizations. Although the connection of the RPA equations to the

Bethe-Salpeter equation is mentioned in the literature [15], a clear and systematic

description appears to be missing. It is the purpose of this chapter to close this

gap and to establish the relation to the Salpeter equation.

The chapter is organized in the following way: In Sec.3.2 we will give a deriva-

tion of the RPA equations based on the Green's function method. The derivation

is based on two approximations, i.e.
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� we apply the instantaneous approximation to the amputated two-fermion

propagator

� we substitute the full one-fermion propagators by free propagators.

In relativistic �eld theory the same approximations lead from the fermion-anti-

fermion Bethe-Salpeter equation to the Salpeter equation (see chapter 2.3). The

structure of this equation shows many similarities with the RPA equations (see

also chapter 2.3.3). We will show in Sec.3.3 that the Salpeter equation and the

RPA equations are indeed equivalent. Concluding remarks are given in Sec.3.4.

3.2 RPA equations and the instantaneous ap-

proximation

3.2.1 Pole structure of the polarization propagator

Let H be the hamiltonian for the dynamics of a (nonrelativistic or relativistic)

system of many interacting identical fermions with ground state j 

0

i and excited

states j 

�

i; � > 0. The corresponding energies will be denoted as E

0

and E

�

with E

�

� E

�

0

for � < �

0

. For simplicity we assume a discrete energy spectrum,

i.e. free states are considered in a �nite space volume. In the relativistic case

j 

0

i is usually the vacuum, so that the excited states are particle-hole excitations

of the vacuum, e.g. the mesons for the case of quarks.

For completeness and in order to introduce the notation some well-known

de�nitions and facts will be recalled in the following.

Let a

�

; a

y

�

be fermion �eld operators with the anticommutator given by

n

a

y

�

; a

�

o

= �

��

. They correspond to an orthonormal single particle basis '

�

which will be speci�ed later. The Heisenberg-picture will be used in the follow-

ing and we de�ne A

�

(t) := e

iHt

a

�

e

�iHt

. The two-fermion propagator is then

given by

i

2

[G(t; t

0

; u; u

0
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��

0

=

= h 

0
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�
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�
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�

(t)A

y

�

0

(u

0
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�

0

(t

0

) j 

0

i (3.1)

(compare �g.3.1). Let u = t + � and u

0

= t

0

+ � with � > 0. In the limit � ! 0

one has

lim

�!0

[G(t; t

0

; t+ �; t

0

+ �)]

��

0
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0
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= �(t� t
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� t) h 
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y

�

0
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0
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y

�

(t)A

�

(t) j 

0

i (3.2)

28



G

α, t α ’, t’

β, βu ’, u’

Figure 3.1: The two-fermion propagator G

and with 1 =

P

�

j 

�

ih 

�

j one obtains

lim

�!0
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(3.3)

The term for the ground state (� = 0) can be rewritten in terms of the one-

fermion propagators S

F

��

(t� t

0

) = �i h 
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The polarization propagator �(t� t

0

) is now de�ned as

lim
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so that
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(3.6)

Since

�(t) e

�iEt

=

1

2�i

Z

e

�i�t

d�

E � � � i�

(3.7)
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Figure 3.2: Location of the poles of �(�)

one can write the fourier transform �(�) =

R

dt e

i�t

�(t) as
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Thus the energy levels of the excited states appear as a doubled system of poles

in the polarization propagator �(�) at � = �(E

�

� E

0

� i�) as shown in �g.3.2.

This doubling of the spectrum can be traced back to the appearence of the time

ordering operator T in the de�nition of the two-fermion propagator G. From

any equation that determines the poles of � we will therefore obtain a doubled

eigenvalue spectrum. This statement holds for relativistic as well as nonrelativis-

tic calculations. It is clear that the appearence of the second set of poles does

not yield any further physical information, since only half of the poles can be

identi�ed with the eigenvalues of the hamiltonian H.

3.2.2 The instantaneous approximation

The amputated two-fermion propagator M is de�ned as (see also �g.3.3)
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The instantaneous approximation ofM used for the investigation of one-particle

{ one-hole propagation is given by the ansatz

M ! M

inst

= �(t

1

� t

3

) �(t

2

� t

4

) �(t

1

� t

2

) (3.10)
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Figure 3.3: De�nition of the amputated two-fermion propagator M

= + + + ....M
inst

Figure 3.4: Diagrams that contribute to M

inst

for a 4-point-interaction

i.e. it is assumed that particles and holes interact instantaneously with each

other.

In nonrelativistic many-body theory this ansatz is equivalent to taking into ac-

count only diagrams that have the appropriate instantaneous structure, as shown

in �g.3.4. The same statement also holds for a relativistic 4-point-interaction. In

more general relativistic �eld theories like QCD, however, the instantaneous ap-

proximation cannot easily be interpreted in terms of Feynman diagrams.

With the relations of the previous section (using t

0

= 0) the instantaneous

approximation yields for the polarization propagator

i [�
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) (3.11)

To simplify the notation we de�ne

[g(t)]

��

0

��

0

:= S

F

��

0

(t)S

F

�

0

�

(�t) (3.12)

Furthermore let

(AB)

���

:=

X

�

0

�

0

A

��

0

�

0

B

�

0

��

0

�

(3.13)

An easy way to represent this de�nition is to de�ne multi-indices as A

���

=:

A

(�) (��)

=: A

ij

so that the usual matrix multiplication can be applied to A

ij

.
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Figure 3.5: The Bethe-Salpeter equation for the amputated two-fermion propa-

gator M

With these de�nitions the Fourier transform of eq.(3.11) can be written as

i�

inst

(�) = g(�) + g(�) �(�) g(�) (3.14)

The exact Bethe-Salpeter equation for the amputated two-fermion propagator M

reads
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(compare �g.3.5) with an appropriate particle-hole kernel K and the notation

[K(t

a

; t

b

; t

c

; t

d

)]

�

a

�

b

�

c

�

d

=: K

abcd

and analogously for M and S

F

.

In a �rst step one neglects the last (exchange) term. The second step is to

substitute M

inst

for M which implies that also K must have this instantaneous

structure, i.e.

K ! K

inst

= �(t

1

� t

3

) �(t

2
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4

) iV (t

1

� t

2

) (3.16)

After applying the Fourier transformation the instantaneous Bethe-Salpeter equa-

tion reads

�(�) = iV (�) + iV (�) g(�) �(�) (3.17)

Together with i�

inst

= g + g � g one obtains i�

inst

= g � g V �

inst

or

i�
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(�) =

�

[g(�)]

�1

� i V (�)

�

�1

(3.18)

3.2.3 The RPA-equations

From eq.(3.8) we know that �(�) has poles at � = �(E

�

� E

0

� i�). On the

other hand we can use eq.(3.18) to obtain a spectral decomposition for �

inst

(�)

in order to calculate the pole positions and matrix elements in the instantaneous

approximation. In the following we therefore look for solutions F (�) of the equa-

tion

�

[g(�)]

�1

� i V (�)

�

F (�) = 0 (3.19)
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To proceed further we approximate the full propagators S

F

in g by the free propa-

gators [S

F

0

(t)]

��

= �i h�
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a

y

�

a

�

is some 'free' hamiltonian with ground state j�

0

i. The basis

states '

�

have thus been chosen as eigenstates of H

0

, i.e. H

0

'

�

= �

�

'

�

. In the

nonrelativistic case an appropriate choice for H

0

is the Hartree-Fock hamiltonian,

whereas in the relativistic case one can use the free Dirac hamiltonian with some

e�ective fermion mass m.

For a system of n fermions, the ground state j�

0

i of H

0

is a product wave-

function where the lowest n eigenstates are occupied, i.e. a

�

j�

0

i = 0 for � > n

and a

y

�

j�

0

i = 0 for � � n. In the relativistic case j�

0

i is the �lled Dirac sea.
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H

0

a

y

�

j�

0

i = (�

�

+ �

0

) a

y

�

j�

0

i (3.20)
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i (3.21)

one �nds

[iS
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and therefore
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In the following we will use capital letters like � = A for � > n and small letters

like � = a for � � n. Using eq.(3.7) for the �-functions and the multi-index

notation of the previous section we �nd for the fourier transform of g

0

�
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(3.25)

Note that the matrix elements of g are zero if one of the multi-indices equals (ab)

or (AB). Because of i�

inst

= g + g�g the same holds for �

inst

and because of

i�

inst

= g � gV�

inst

also the matrix elements of V with these indices are not

relevant. It is therefore su�cient to consider only the index combinations (Ab)

and (bA). This simpli�cation is a consequence of approximating the full fermion

propagators by the free ones. Write

F =

 

X

Y

!

(3.26)
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with X

k

= F

(Ab)

and Y

k

= F

(bA)

. In the following we will assume that X; Y are

vectors of dimension D, i.e. k = 1 : : :D. De�ne 2D � 2D -matrices 
 and N by
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which we will write in matrix notation as
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) 0

0 (�

B
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1 0
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Setting h := 
 + V we �nd that eq.(3.19) (multiplied with i) can be written as

hF

�

= �

�

N F

�

(3.29)

where � labels the di�erent solutions and F

�

:= F (�

�

). In the nonrelativistic case

one usually approximates the kernel V by its lowest order contribution, i.e. the

two-fermion potential. Then this equation is exactly the RPA-equation of e.g.

ref.[56].

Up to now it is not clear how to connect �

�

and F

�

with the eigenvalues and

eigenstates of the full Hamiltonian H. It is usefull at this point to recall some of

the properties of the RPA-equation [15, 56]:
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be a solution with eigenvalue �

�

. Then

F

�

=

 

X

�

Y

�

!

=

 

(Y

�

)

�

(X

�

)

�

!

(3.32)

is a solution with eigenvalue �

�

= ��

�

(we assume that �

�

is real). For

the components of the eigenvectors this means that F

�

(Ab)

= [F

�

(bA)

]

�

and

F

�

(bA)

= [F

�

(Ab)

]

�

.

� If F

�

1

and F

�

2

are solutions with �

�

1

6= �

�

2

then

hF

�

1

jN jF

�

2

i := (F

�

1

)

y

N F

�

2

= 0 (3.33)

34



� If B is 'small enough' the 2D eigenvalues �

�

are real and nonzero. We will

use the index convention � = 1 : : : D for �

�

> 0 and � = D+1 : : : 2D for

�

�

< 0 with �

�

= ��

�

. The solutions can then be normalized as

hF

�

0

jN jF

�

i = N

�

�

�

0

�

(3.34)

with N

�

= 1 and N

�

= �1. They form a 2D-dimensional basis, i.e. one

can expand a vector F as F =

P

�

c

�

F

�

with c

�

= N

�1

�

hF

�

jN jF i so that

1 =

X

�

N

�1

�

jF

�

i hF

�

jN j (3.35)

The following calculation

(N� � h)

�1

N jF

�

0

i = (� �N

�1

h)

�1

jF

�

0

i =

1

� � �

�

0

jF

�

0

i =

=

X

�

1

� � �

�

N

�1

�

jF

�

i hF

�

jN jF

�

0

i (3.36)

now showes that the spectral decomposition of (N� � h)

�1

is given by

(N� � h)

�1

=

2D

X

�=1

1

� � �

�

N

�1

�

jF

�

i hF

�

j (3.37)

Let (��) stand for (Ab) or (aB). Since F

�

(��)

= [F

�

(��)

]

�

the spectral decomposition

for the matrix elements of �

inst

(�) can be written as

[�

inst

(�)]

���

= (N� � h)

�1

(��) (�)

=

=

M

X

�=1

�

1

� � �

�

F

�

(��)

[F

�

(�)

]

�

�

1

� + �

�

[F

�

(��)

]

�

F

�

(�)

�

(3.38)

Comparing this equation with the exact pole structure given in eq.(3.8) we can

identify

F

�

��

= h 

0

ja

y

�

a

�

j 

�

i (3.39)

�

�

= E

�

� E

0

(3.40)

3.3 From the Salpeter equation to the RPA-

equations

In relativistic �eld theory particle-hole excitations of the fermionic vacuum are

described by the fermion-antifermion Bethe-Salpeter equation (see chapter 2.2).

In the instantaneous approximation this equation reduces to the Salpeter equation

35



(see chapter 2.3). From the considerations of the previous section we expect the

Salpeter equation to be equivalent to the RPA equations (3.29). We will show in

this section that this is indeed the case.

As shown in chapter 2.3 eq.(2.18) the Salpeter equation for one fermion avor

can be written in the form

(H )(~p) =M  (~p) (3.41)

where

(H )(~p) = H(~p) (~p)�  (~p)H(~p)

�

Z

d

3

p

0

(2�)

3

�

+

(~p) [W (~p; ~p

0

) (~p

0

)] �

�

(~p)

+

Z

d

3

p

0

(2�)

3

�

�

(~p) [W (~p; ~p

0

) (~p

0

)] �

+

(~p) (3.42)

with the free Dirac hamiltonian H(~p) = 

0

(~~p + m), the projection operators

�

�

= (! � H(~p))=(2!) and ! =

p

~p

2

+m

2

(don't confuse H(~p) with the full

hamiltonian of the previous section). Here M is the mass of the bound state, m

is the e�ective fermion mass and W is the instantaneous interaction kernel. The

scalar product was given by (see eq.(2.31))

h 

1

j 

2

i =

Z

tr

�

 

y

1

�

+

 

2

�

�

�  

y

1

�

�

 

2

�

+

�

(3.43)

with all quantities depending on ~p and the notation

R

=

R

d

3

p=(2�)

3

.

Let u(~p); v(~p) be free Dirac spinors (we use the conventions of [25] in the

following). De�ne the 4� 4 -matrices

w

(+)

rs

(~p) := u

r

(~p)
 v

y

s

(�~p)

w

(�)

rs

(~p) := v

s

(�~p)
 u

y

r

(~p) (3.44)

Note that in the notation of chapter 2.3.1 eq.(2.15) this de�nition corresponds to

w

(+)

rs

(~p) =

s

(!

1

+m

1

) (!

2

+m

2

)

2m

1

2m

2

^

�

"

�'

rs

; �

~�~p

!

1

+m

1

'

rs

~�~p

!

2

+m

2

#



0

w

(�)

rs

(~p) =

s

(!

1

+m

1

) (!

2

+m

2

)

2m

1

2m

2

^

�

"

~�~p

!

1

+m

1

'

sr

~�~p

!

2

+m

2

; '

sr

#



0

where '

rs

= �

r


�

+

s

and �

r

is the Pauli-spinor of the fermion with spin projection

r = �1=2.

We will use the box normalization in the following, i.e. we substitute

Z

d

3

p

(2�)

3

�!

1

V

X

~p

(3.45)
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Since �

+

 �

+

= �

�

 �

�

= 0 we can expand

 (~p) =

p

V

m

!

X

r;s=�1=2

�

b

(+)

~p;rs

w

(+)

rs

(~p) + b

(�)

~p;rs

w

(�)

rs

(~p)

�

(3.46)

with some suitable coe�cients b. The factors in front of the summation sign have

been choosen to simplify the notation in the following.

Solving the Salpeter equation H =M  is equivalent to solving

h 

1

jH 

2

i =M h 

1

j 

2

i (3.47)

for all given  

1

.

With eq.(3.46) and the relations for u; v of ref.[25] we compute

tr

h

[w

(+)

rs

]

y

�

+

w

(+)

r

0

s

0

�

�

� [w

(+)

rs

]

y

�

�

w

(+)

r

0

s

0

�

+

i

= +

!

2

m

2

�

rr

0

�

ss

0

(3.48)

tr

h

[w

(�)

rs

]

y

�

+

w

(�)

r

0

s

0

�

�

� [w

(�)

rs

]

y

�

�

w

(�)

r

0

s

0

�

+

i

= �

!

2

m

2

�

rr

0

�

ss

0

(3.49)

tr

h

[w

(+)

rs

]

y

�

+

w

(�)

r

0

s

0

�

�

� [w

(+)

rs

]

y

�

�

w

(�)

r

0

s

0

�

+

i

= 0 (3.50)

tr

h

[w

(�)

rs

]

y

�

+

w

(+)

r

0

s

0

�

�

� [w

(�)

rs

]

y

�

�

w

(+)

r

0

s

0

�

+

i

= 0 (3.51)

where all quantities depend on ~p. Using the multiindex i = (~p; r; s) the scalar

product in the box normalization can therefore be written as

h 

1

j 

2

i =

X

i

h

(b

(+)

1

)

�

i

(b

(+)

2

)

i

� (b

(�)

1

)

�

i

(b

(�)

2

)

i

i

=

=

 

b

(+)

1

b

(�)

1

!

y

 

1 0

0 �1

!  

b

(+)

2

b

(�)

2

!

(3.52)

We further have

h 

1

jH 

2

i = h 

1

jT  

2

i + h 

1

jV  

2

i with (3.53)

h 

1

jT  

2

i =

1

V

X

~p

2! tr

�

 

y

1

(~p) 

2

(~p)

�

(3.54)

h 

1

jV  

2

i = �

1

V

2

X

~p

X

~p

0

tr

�

 

y

1

(~p)W (~p; ~p

0

) 

2

(~p

0

)

�

(3.55)

We proceed analogously for the kinetic energy term and compute

tr

h

[w

(a)

rs

(~p)]

y

[w

(a

0

)

r

0

s

0

(~p)]

i

=

!

2

m

2

�

rr

0

�

ss

0

�

aa

0

(3.56)

(where a; a

0

= �) so that with !

i

= !(~p)

h 

1

jT  

2

i =

X

i

2!

i

h

(b

(+)

1

)

�

i

(b

(+)

2

)

i

+ (b

(�)

1

)

�

i

(b

(�)

2

)

i

i

=

=:

 

b

(+)

1

b

(�)

1

!

y

 

2! 0

0 2!

!  

b

(+)

2

b

(�)

2

!

(3.57)
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For the interaction term we de�ne

V

a

1

a

2

ij

:= �

1

V

m

!

m

!

0

tr

�

[w

(a

1

)

r

1

s

1

(~p)]

y

W (~p; ~p

0

)w

(a

2

)

r

2

s

2

(~p

0

)

�

(3.58)

with a

1

; a

2

= � and the multiindices i = (~p; r

1

; s

1

); j = (~p

0

; r

2

; s

2

). Consider

interaction kernels that ful�ll the relation [W (~p; ~p

0

) (~p

0

)]

y

= W (~p; ~p

0

) [ (~p

0

)]

y

(this is usually the case for kernels of physical interest): Since [w

(+)

rs

(~p)]

y

= w

(�)

rs

(~p)

we have V

��

ij

= (V

++

ij

)

�

and V

�+

ij

= (V

+�

ij

)

�

so that we can write

h 

1

jV  

2

i =

X

i;j

X

a

1

;a

2

=�

(b

(a

1

)

1

)

�

i

V

a

1

a

2

ij

(b

(a

2

)

2

)

j

=

 

b

(+)

1

b

(�)

1

!

y

 

V

++

V

+�

(V

+�

)

�

(V

++

)

�

!  

b

(+)

2

b

(�)

2

!

(3.59)

Since b

(�)

1

are arbitrary the Salpeter equation can now be written in matrix form

as

" 

2! 0

0 2!

!

+

 

V

++

V

+�

(V

+�

)

�

(V

++

)

�

!# 

b

(+)

b

(�)

!

=

= M

 

1 0

0 �1

!  

b

(+)

b

(�)

!

(3.60)

We identify the eigenvalues of the free hamiltonian with the kinetic energies of

the free fermions as �

A

= ��

a

= !

i

and �

B

= ��

b

= !

i

. Further we identify the

positive eigenvalues M with �

�

= E

�

� E

0

and

 

b

(+)

b

(�)

!

= F

�

=

 

X

�

Y

�

!

(3.61)

Therefore we �nd that the Salpeter equation (3.60) has exactly the form of the

RPA-equations (3.29).

In this context we would like to mention a work of J.Piekarewicz [48, 50] which

gives a direct derivation of the Salpeter equation using a method similar to our

derivation of the RPA equations given in section 3.2.

3.4 Conclusion

It has been shown that the RPA equations can be derived by applying the in-

stantaneous approximation to the amputated two-fermion propagator and by ap-

proximating the full fermion propagators by the free ones. Our derivation holds

for nonrelativistic as well as relativistic fermionic systems. Since in relativistic

�eld theory the same approximations lead from the fermion-antifermion Bethe-

Salpeter equation to the Salpeter equation, this equation should be equivalent to

the RPA equations. We have shown explicitely that this is indeed the case.
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The RPA equations have been carefully analysed by many authors, espe-

cially in the context of nuclear physics (compare e.g. the references given in

[56]; the mathematical structure of the RPA equations has been investigated in

refs.[11, 67]). It is interesting that these results can be transfered to the Salpeter

equation, as has been done recently by J.Parramore and J.Piekarewicz [48]. These

authors employed the techniques developed by Thouless in the context of nuclear

collective excitations [65] to test the stability of solutions of the Salpeter equation

with a scalar con�nement. As discussed in more detail in chapter 4 they �nd an

instability for this case, which is in agreement to our results presented in the

following chapters.
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Chapter 4

Spectra and decays for light

mesons

The spectra and electroweak decay properties of light mesons are analyzed within

the framework of the instantaneous Bethe-Salpeter equation. The interaction

kernel comprises alternative spin-structures for a parameterization of con�nement

and a residual quark-antiquark interaction based on instanton e�ects. It is shown

that only with a vector con�nement the parameters can be chosen such as to yield

a good description of the light pseudoscalar and vector mesons including weak

and two photon decays. However it is found that it is not possible to reconcile this

with the Regge behavior of higher lying meson states with the same parameter

set. For the Salpeter equation with a scalar con�nement we �nd an instability, i.e.

for an increasing number of basis states the numerically obtained eigenvalues do

not converge to real positive numbers, which is in agreement with results recently

obtained by J.Parramore and J.Piekarewicz [48].

4.1 Introduction

In chapter 2 we analyzed the Bethe-Salpeter(BS) equation with an instantaneous

interaction (Salpeter equation). We will now use this formalism as a basis for a

quark model of light mesons. In spite of the intrinsic di�culties connected with

the instantaneous treatment, we feel that an application to light meson systems

is worthwhile, mainly because a parametrization of con�nement including retar-

dation e�ects is still lacking. The present treatment has a number of advantages

compared to others, i.e.

� The relativistic kinematics of the quarks is treated correctly;

� The amplitudes have the correct relativistic normalization;

� The lower component �

��

of the Salpeter amplitude is determined dynam-

ically.
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On the other hand the practical advantages of a nonrelativistic treatment are

also present, i.e.

� The Salpeter equation can be formulated as an eigenvalue problem H =

M for the mass M of the bound state.

� One can de�ne a (not positive de�nite) scalar product h 

a

j 

b

i for the

Salpeter amplitudes.

� The Salpeter operator H is selfadjoint with respect to this scalar product.

The numerical method developed in chapter 2 enables the calculation of meson

mass spectra and the corresponding BS-amplitudes. In this chapter we have also

given formulas to compute some important electroweak meson decay widths.

In this section we shall apply this method to an explicit quark model for light

mesons. Our main concern in this context will be whether a realistic description

of deeply bound states like the pion is compatible with a reasonable description

of con�nement.

Let us �rst give a list of the main features of light mesons that will be con-

sidered in the following:

� the low masses of � and K

� the weak decay constants f

�

and f

K

� the decays �

0

; �; �

0

! 2 

� the masses and the avor mixing coe�cients of � and �

0

� the masses and the leptonic decay widths for the �; ! and � mesons

� the Regge behavior M

2

� J

As far as we know there presently is no model that can describe all these features

in a consistent way. On the one hand there is the nonrelativistic quark model that

gives a reasonable description of the mass spectra [8, 53, 10], but that completely

fails in describing the decay widths of the deeply bound states like the pion (see

Sec.4.3.4). On the other hand there are models like the Nambu Jona-Lasinio

model [44, 27, 69] that are based on the chiral symmetry of QCD for vanishing

current quark masses. This model leads to a good description for the �;K; � and

�

0

mesons, but higher angular momenta states or radial excitations cannot be

described since con�nement is ignored.

Attempts to arrive at a more complete description based on the Salpeter equa-

tion or related quasipotential equations have recently been given by J.F.Laga�e

[29] and by P.C.Tiemeijer and J.Tjon [66]. Their results show the di�culty of

�nding a suitable ansatz for the con�ning interaction kernel.
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The model we present in the following is based on a linear scalar or alterna-

tively vector con�ning kernel combined with an e�ective interaction computed

by 't Hooft from instanton e�ects in QCD [24, 62, 49]. A nonrelativistic version

of this interaction has already lead to good results for the meson and baryon

mass spectra [8, 53, 10]. We therefore feel encouraged to test this ansatz in the

relativistic Bethe-Salpeter framework.

The chapter is organized as follows: The explicit form of the con�ning BS-

kernel and of the 't Hooft kernel is given in Sec.4.2. In Sec.4.3 we present the

calculated meson mass spectra and obtain the pion and kaon decay constants

f

�

; f

K

, the decay width into two photons for the �

0

; � and �

0

mesons and the

leptonic widths for the vector mesons �; ! and �. We will compare these decay

widths to corresponding nonrelativistic results in Sec.4.3.4 using the wave func-

tion of ref.[8], which shows the impressive improvement due to the relativistic

treatment of the quarks compared to the nonrelativistic potential model. Finally

we give some concluding remarks in Sec.4.4.

4.2 The Bethe-Salpeter kernel

4.2.1 Con�nement

Up to now the con�ning interaction of QCD is only known in the static limit of

heavy quarks. In this limit it has been shown [32, 20] that the static potential

between quarks is of the form V

C

(r) = a

c

+ b

c

r + W where W denotes the

relativistic corrections of the order p

2

=m

2

. As stated by Gromes [32] it is still

an open question whether an additional 1=r term should also be included into

the static con�ning potential. Usually one concludes from the sign of the spin-

orbit coupling term in W that the con�ning q�q-interaction behaves like a Lorentz

scalar.

The problem for the case of light quarks is that up to now there is no unam-

biguous extension of the con�ning potential beyond the static limit. Especially

there is no prescription on how to extend it to a noninstantaneous form. Naive

noninstantaneous extensions fail as has been shown by S.N.Biswas et al. [6]

for the harmonic oscillator BS-kernel V (x) = �bx

2

= b (~x

2

� (x

0

)

2

) that yields

only a continuous spectrum. Similar results are to be expected for other kernels

like 1=q

4

. Because of these di�culties the only way we see at the moment is to

parameterize con�nement as an instantaneous interaction kernel.

The sign of the LS-term in the static limit would be compatible with a scalar

con�nement kernel. However some authors [17, 29] have shown that the linear

Regge behavior M

2

� J is lost for this choice, since their calculated bound

state masses come out too small for higher angular momenta. This is due to

the relativistic corrections to the static potential and becomes more problematic

with decreasing quark masses. Recently J.Parramore and J.Piekarewicz [48] gave
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an analytical argument that the Salpeter equation with a scalar con�nement

even leads to an instability, i.e. purely imaginary eigenvalues. In our framework

this is reected by the fact that for an increasing number of basis states the

obtained eigenvalues do not converge to real positive numbers, but �nally become

imaginary [38].

In the context of nuclear collective excitations treated in the RPA approach

this signals the instability of the ground state against the formation of particle-

hole pairs. However, it is not clear if this interpretation can be reasonably

transfered to the Salpeter equation. It is interesting to note that for relativistic

quasipotential approaches, which converge to the Dirac equation in the case of

a heavy-light q�q state, the instability occures for a vector con�nement, whereas

a scalar con�nement leads to stable results [66]. The same holds for the Dirac

equation itsself [39]. This indicates that the observed instability of the Salpeter

equation with a scalar con�nement might be a defect of the instantaneous ap-

proximation.

J.Parramore and J.Piekarewicz [48] further suggest that the instability will

persist even for large values of the constituent quark mass. Nevertheless the

numerical solutions aquire a quasistable character in this case, as will be shown

in detail in the following sections.

For a vector con�ning kernel the instability problem is not present, but in the

static limit a vector kernel leads to an LS-term which has the wrong sign.

To our knowledge there presently is no convincing parameterization for the

con�ning kernel that exhibits both features, i.e. leads to linear Regge trajectories

and yields a spin-orbit term with the correct sign.

In the following we will analyze both spin structures for the con�nement, i.e.

a scalar 1 
 1 and a vector 

0


 

0

interaction. In the rest frame of the bound

state the corresponding BS-kernels in eq.(2.9) are parameterized as

h

V

V

C

(~p; ~p

0

)�(~p

0

)

i

= �V

C

((~p� ~p

0

)

2

) 

0

�(~p

0

) 

0

(4.1)

h

V

S

C

(~p; ~p

0

)�(~p

0

)

i

= V

C

((~p� ~p

0

)

2

)�(~p

0

) (4.2)

where V

C

is a scalar function which has the fourier transform V

F

C

(r) = a

c

+ b

c

r

in analogy to nonrelativistic quark models (note that in the nonrelativistic limit

V

F

C

(r) becomes the potential in the Schr�odinger equation).

4.2.2 't Hooft interaction

The 't Hooft lagrangian

It is already known from nonrelativistic potential models that the masses of the

scalar and pseudoscalar mesons �; K; �; �

0

cannot be described with a con�ning

potential alone. The usual extension would be to add another contribution to

the interaction kernel that comes from One Gluon Exchange (OGE). This works
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quite well for heavy quarkonia [5, 17] (see also chapter 5). For light mesons,

however, the avor independent OGE leads to degenerate � and � meson masses

in clear contradiction to the experimental mass values m

�

= 140MeV and m

�

=

549MeV . In order to cure this discrepancy one would have to take into account

higher order diagrams.

There is another QCD based candidate for a residual q�q-interaction computed

by 't Hooft and others from instanton e�ects [24, 62, 49] which has the appro-

priate avor dependence to solve this problem. This has been shown within a

nonrelativistic potential model [8], where a good description of the meson and

baryon mass spectra has been obtained.

Instantons are special solutions of the classical nonabelian Yang-Mills equa-

tions in Euclidian space. They are peaked both in space and imaginary time

having a �nite extension �. Since they cannot be deformed continuously into

classical solutions corresponding to gluon �elds they lead to an e�ective interac-

tion between quarks that is not covered by perturbative gluon diagrams. This

interaction leads to spontaneous breaking of chiral symmetry as can be seen by

normal ordering of the underlying Lagrangian (see appendix C). The normal

ordered Lagrangian takes the form

L = k +

3

X

j=1

: (i�q

j



�

@

�

q

j

�m

j

�qq) : +�L(2) + �L(3) (4.3)

where k is an inessential constant that renormalizes the vacuum energy. �L(2)

and �L(3) are two and three body terms and m

j

= m

0

j

+ �m

j

is the e�ective

constituent quark mass. In the following we will consider these terms.

The constituent quark mass

The contribution �m

j

to the e�ective constituent quark mass m

j

= m

0

j

+ �m

j

is given by

�m

n

=

�

c
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d

0

(�)
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(4.4)

where the instanton density for three colors and three avors reads [63]

d

0

(�) = (3:63 � 10

�3

)

 

8�

2

g

2

(�)

!

6

exp

 

�

8�

2

g

2

(�)

!

(4.5)

with

 

8�

2

g

2

(�)

!

= 9 ln

 

1

�

QCD

�

!

+

32

9

ln ln

 

1

�

QCD

�

!

(4.6)
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within two loop accuracy [64]. Here �

QCD

is the QCD scale parameter. The

integration over the instanton size � has to be carried out up to a cuto� value �

c

where the ln ln term from the two loop correction is still small compared to the

ln term.

Equations of type (4.4) are usually called Gap equations. They describe the

generation of a dynamical quark mass due to the interaction with the nega-

tive Dirac see. In our model the constituent quark masses m

j

will be used as

free parameters that are �tted to the experimental data. It will be checked in

the end (see Sec.4.3.5) whether the obtained quark masses are compatible with

common values for the quark condensates present in �m

j

assuming that the

con�nement interaction does not contribute essentially to the process of chiral

symmetry breaking.

The two body interaction

The two body term reads (see appendix C)

�L(2) = �

3

16

X

i

X

kl

X

mn

g

e�

(i) "

ikl

"

imn

n
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[

0

�

0
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0



5

�

0



5

] (2P
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3

+ P
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) q
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q

n
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o

(4.7)

where the e�ective coupling constants are given as

g

e�

(i) =

�

c

Z
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d
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�
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q
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(4.8)

and the tensor notation

q

y

q

y

(A �B) q q :=

X

i;j

X

k;l

q

y

i

q

y

j

A

ik

�B

jl

q

k

q

l

(4.9)

has been used for Dirac and color indices. This representation explicitly shows

the antisymmetric avor dependence of the interaction. The color sextett and

antitriplett projection matrices are given by

P

C

6

=

1

2

(1

C

+�

C

) =

2

3

1

C

+

1

4

~

��

~

� (4.10)

P

C

�

3

=

1

2

(1

C

��

C

) =

1

3

1

C

�

1

4

~

��

~

� (4.11)

so that

2P

C

�

3

+ P

C

6

=

1

2

(3 1

C

��

C

) =

4

3

1

C

�

1

4

~

��

~

� (4.12)

where �

C

is a color exchange matrix de�ned as �

C

ij;kl

= �

il

�

jk

and �

a

(a =

1; : : : ; 8) are the SU(3) color matrices. Just like the quark masses also the cou-

pling constants will be treated as free parameters in our model.
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The three body interaction

After a lengthy calculation the three body force can �nally be written in the form

�L(3) =

27

80
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) qqq :

o

(4.13)

where P

F

1

is the projector onto a three-particle avor singulett state, P

C

10

and

P

C

8

are projectors onto the color decuplett and the color octett. The e�ective

three-body coupling constant is given by

g

(3)

e�

=

Z

�

c

0

d�

d

0

(�)

�

5

�

4

3

�

2

�

3

�

3

(4.14)

Obviously this three body force does not contribute to q�q-states and to colorfree

qqq-states.

The 't Hooft kernel

In order to distinguish di�erent indices in the following we will use the notation

s

i

for Dirac indices, c

i

for color indices and f

i

for avor indices. The vertex

corresponding to �L

2

is shown in Fig.4.1. As shown in appendix C.3 the vertex

1

3

2

4

Figure 4.1: Instanton induced interaction vertex corresponding to �L

2

.
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with the de�nition

G

f

3

f
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1
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5
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(4.16)

For the q�q ! q�q amplitude we have to consider the two diagrams given in Fig.4.2.

In a meson the quark and the antiquark are in a color singulett state represented

1 2

3 4

1 2

3 4

- +

Figure 4.2: Instanton induced interaction vertices for q�q ! q�q.

by the matrix �

C

c

1

c

2

= �

c

1

c

2

=

p

3. The color matrix elements for the two vertices

are then given by
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so that only the second vertex in Fig.4.2 contributes to the interaction kernel.

The e�ective 't Hooft interaction vertex between q�q color singulett states is then

given by

(�4i)G
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) (4.19)

Since we assume SU(2)-avor invariance of the interaction we set

g :=

3

8

g

e�

(s) ; g

0

:=

3

8

g

e�

(n) (4.20)

Table 4.1: Flavor matrix elements of G

f

2

f

3

;f

1

f

4

for pseudoscalar mesons

�

0

�

n

�

s

�

0

-g 0 0

�

n

0 g

p

2 g'

�

s

0

p

2 g' 0
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Table 4.2: Flavor dependence of the instanton induced interaction G

f

2

f

3

;f

1

f

4

(see

eq.(4.16))
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! u

�

d d�u u�s d�s s
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d s�u u�u d
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d s�s
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4

#

u

�

d -g 0

d�u 0 -g

u�s -g' 0 0 0

d�s 0 -g' 0 0

s

�

d 0 0 -g' 0

s�u 0 0 0 -g'

u�u 0 g g'

d

�

d g 0 g'

s�s g' g' 0

where s stands for strange and n stands for nonstrange (u,d) avor. The results

for G

f

2

f

3

;f

1

f

4

are given in Tab.4.2. Tab.4.1 shows the matrix elements of G

f

2

f

3

;f

1

f

4

for the avor functions
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2 (4.21)

�

n

= (u�u+ d

�

d)=

p

2 (4.22)

�

s

= s�s (4.23)

From the vertex we can extract the lowest order contribution of the 't Hooft

interaction to the BS-kernel as
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(4.24)

As shown in the appendix this interaction only acts on the scalar and pseudoscalar

mesons J

�

P

= 0

�

. For the pseudoscalar mesons it is attractive for the � meson

with a coupling constant g and for the K meson with a coupling constant g

0

. For

the � and �

0

mesons the interaction leads to mixing of nonstrange and strange

avor amplitudes. The e�ective sign of the interaction is reversed for the scalar

mesons thus being repulsive for the a

0

. Note that in the nonrelativistic limit the

't Hooft interaction only acts on the pseudoscalar states J

�

P

= 0

�

. The 't Hooft

kernel as it stands represents a pointlike interaction that has to be regularized.

Following ref.[8] we do this by multiplying the kernel with a regularizing Gaussian

function

V

reg

(q) = e

�

1

4

�

2

q

2

(4.25)
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with ~q = ~p � ~p

0

and q = j~qj. In coordinate space this choice corresponds to

replacing the �(~r) function by

V

F

reg

(r) =

1

(�

p

�)

3

e

�

r

2

�

2

(4.26)

which introduces a �nite e�ective range �.

4.3 Results and discussion

4.3.1 Models and Parameters

The main concern of this chapter was to see whether we can obtain a consistent

description of a) the masses and decays of the low lying pseudoscalar and vector

mesons and b) con�nement reected e.g. by the Regge trajectories.

For this purpose we investigate two di�erent models of the con�nement kernel:

1) a vector 

0


 

0

- and 2) a scalar 1
 1-structure.

The parameters used are the nonstrange and strange quark masses m

n

and

m

s

, the o�set a

c

and slope b

c

of the con�nement interaction, the two coupling

constants g, g' and the e�ective range � of the residual instanton induced inter-

action. So the total number of parameters amounts to seven.

We used two sets of parameters in the vector con�nement case: Model V1

was tuned to reproduce the masses and decays of the low lying mesons. We

therefore used a small nonstrange quark mass m

n

, as the correct description of

the pseudoscalar decays depends essentially on this quantity. Given this mass we

had to take a moderate con�nement slope to reproduce the decays of the vector

mesons. The o�set a

c

was �xed by the �-mass and m

s

by the K

�

-mass. Finally g

and g' were �xed by the masses of the pseudoscalars �; � and K. In Model V2 we

used a larger nonstrange mass of m

n

of about 1/3 of the nucleon mass, which is

a value common to Nonrelativistic Quark Models. The aim of this parameter set

was to obtain a good description of the Regge trajectories and the higher lying

resonances. Note that the slope of the con�ning potential comes out larger than

in nonrelativistic models, where a typical value is b

c

� 850 MeV/fm [8].

Finally in Model S we investigated a scalar con�nement provided with the

same quark mass m

n

as in V2. As shown in �g.4.5 the obtained eigenvalues do

not converge to real positive numbers for an increasing number of basis states, but

�nally become purely imaginary. However for higher quark masses this instability

quickly becomes less visible, and the eigenvalue aquires a quasistable character.

It is clear that for large enough quark masses the instability should become

rather spurious, since in the nonrelativistic limit the Salpeter equation leads to

the Schr�odinger equation, where such an instability does not exist. As shown by

J.Parramore and J.Piekarewicz [48] the reason for the instability can be traced

back to the existence of negative energy amplitudes in the Salpeter equation.
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Table 4.3: Parameters of the di�erent models (see Sec.4.3.1)

Parameter V1 V2 S

m

n

[MeV] 170 340 340

m

s

[MeV] 390 568 487

a

c

[MeV] -552 -1340 -998

b

c

[MeV/fm] 570 1400 1000

g [MeV fm

3

] 51.67 34.65 44.79

g' [MeV fm

3

] 46.92 30.84 41.01

� [fm] 0.42 0.42 0.42

The coupling of positive and negative energy components induced by the scalar

con�nement implies that for momenta larger than the constituent quark mass

the con�ning potential shifts from an e�ectively rizing into a sliding regime.

By solving the Salpeter equation within a small number of basis states one ef-

fectively introduces a momentum cuto�, i.e. the sliding regime will be missed |

and so will the instability | whenever the constituent mass exceeds the value of

the cuto�. Consequently for higher quark masses only for a dramatically increas-

ing number of basis states this instability will be relevant, whereas numerical

solutions obtained with a smaller number of basis states aquire a quasistable

character, i.e. are almost independant of the exact number of basis states taken

into account. Since for high momenta the instantaneous approximation should

be less valid anyway, a quasistable numerical solution  can be considered as a

physically reasonable approximate solution to the Salpeter equation in the sense

that he

i

jH i =M he

i

j i is full�lled exactly, where i = 1 : : : i

max

labels the basis

functions e

i

taken into account (compare chapter 2.4 for the notation).

In the following these quasistable masses will be given for model S provided

the quasistable character is indeed present. This is the case for small angular

momenta and as long as the fraction of the con�nement slope b

c

and the quark

mass m

q

is su�ciently small.

The parameters for the three models are listed in Tab.4.3.
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4.3.2 Mass spectra

The quality of the mass spectra is di�erent for the three models, as di�erent

priorities led us to the parameters. Common to all three models is an overall

agreement of the masses of the pseudoscalars �;K; �; �

0

and the vector mesons

�; !; �;K

�

. The spectra for these mesons are compared to experimental data

in Figs. 4.3, 4.4. The 't Hooft interaction leads to the correct splitting of �; �

and �

0

mass. In contrast to experiment, where the a

0

and f

0

mesons are nearly

degenerate, we obtain a large splitting due to the instanton induced interaction of

several hundred MeV (compare Tab.4.4). For a vector type kernel with positive

spin orbit splitting this leads an enormous attraction in the f

0

channel: allthough

there is a scalar state at roughly 1GeV, we also �nd a state with imaginary

mass and zero norm. The physical interpretation of this phenomenon however

is not clear. For a scalar con�nement this e�ect is compensated by the negative

spin orbit splitting. In the following we will discuss the di�erences of the three

parameter sets.

Since in model V1 we used a small con�nement slope to reproduce the decays

of the vector mesons, the calculated Regge trajectory is too at (see Fig.4.6). The

spin-orbit splitting between the 1

++

and 2

++

mesons in our model is purely due

to the con�ning interaction. In both models with a vector kernel this splitting is

about 200 MeV and thus exceeds the experimental mass di�erence, which is in

fact rather small (see Tab.4.4).

In model V2 with large quark masses and large con�nement slope b

c

we obtain

a good description of the masses of all mesons comparable to results of nonrela-

tivistic calculations. However b

c

has to be much larger in the BS framework, as

the kinetic energy is obviously overestimated in nonrelativistic calculations. The

Regge trajectories representing the con�nement property are well reproduced

(Fig.4.6). For the spin-orbit splitting the same remarks as for V1 apply.

Finally the quasistable solutions of model S give a reasonable description of

the ground states of the pseudoscalar and vector mesons. For the states with

large angular momentum the quasistable character of the solutions is less promi-

nent. As mentioned above the method of solving the BS equation by a basis

expansion does not lead to convergent solutions with positive norm. With in-

creasing dimension of the basis the smallest positive eigenvalue decreases until it

becomes imaginary (see �g.4.5; a similar problem arises if one studies a 

�


 

�

interaction). For these reasons we also omitted in the Regge plot the state with

angular momentum j=4. The f

1

meson mass is larger than the mass of the f

2

meson. Taken together with the results for the vector case this indicates that the

spin-orbit splitting can only be explained by a mixture of scalar and vector type

interaction, as will be investigated in chapter 6.
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Figure 4.3: Mass spectra of the pseudoscalar mesons. The columns for each

meson correspond (from the left) to model V1, model V2, experiment [47] and

model S. The shaded areas (3rd column) indicate the experimental full width of

the meson.
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Figure 4.4: Mass spectra of the vector mesons (see also caption to Fig. 4.3).
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Figure 4.5: Dependence of the calculated Salpeter eigenvalues for a state with

J

PC

= 0

�+

on the number of basis states taken into account. The four curves

correspond to the quark masses m

q

= 200MeV (lowest curve), 250, 300 and

350MeV (upper curve). For the interaction kernel a pure scalar con�nement

(i.e. without 't Hooft interaction) with a

c

= 0 and b

c

= 1000 MeV/fm has

been used. The radial part of the basis states in momentum space is given by

R

nL

(y) = N

nL

y

L

L

2L+2

n

(y) e

�y=2

with y = p� and L

2L+2

n

(y) being a Laguerre

polynomial. We used � = 5:0 fm here.
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2   (

G
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Figure 4.6: Regge trajectory for the isovector mesons with S = 1. The solid line

shows the experimental masses for �; a

2

; �

3

; a

4

[47] where the errorbar gives the

experimental error for the resonance position. The short dashed line corresponds

to the calculated masses of model V1, the dotted line to model V2 and the long

dashed line to the scalar con�nement (model S).

53



Table 4.4: Spin orbit splitting for the �rst positive parity mesons and the e�ect

of the instanton induced interaction on the 0

++

mesons, where a

�

denotes the

existence of an additional state with imaginary mass and zero norm, see Sec.4.3.2

(all Masses in MeV).

Meson J

PC

I V1 V2 S

a

0

(980) 0

++

1 960 1130 1260

f

0

(975) 0

++

0 950

�

1270

�

950

f

1

(1285) 1

++

0 930 1060 1150

f

2

(1270) 2

++

0 1100 1280 1010

4.3.3 Decay Observables

In this section we will discuss the inuence of the parameters on the decay ob-

servables of the pseudoscalar and vector mesons.

The parameters of Model V1 have been chosen in order to give a good de-

scription of the masses and the decays of the pseudoscalar and vector ground

states. Tab.4.5 shows that we obtain an almost quantitative agreement. As an

important result we consider the fact that the � and � can be described within

the present framework, albeit with relatively small quark masses. This is re-

ected in the simultaneous agreement we obtain for the pion decay constant f

�

and the decay width �

0

! , which in the Goldstone picture are related to the

Adler Bell Jackiv anomaly [1]. It becomes clear that a relativistic treatment of

the decay formula and of the normalization are important for a correct under-

standing of the pion as deeply bound quark antiquark state. This can also be

seen in Fig.4.7 showing the upper and lower component �

++

; �

��

of the pion

amplitude. In contrast to the wave function for the � meson (Fig.4.8) the upper

pion amplitude is only about 10% larger than the lower one in the region of small

relative momenta. For higher momenta the amplitudes even become equal. This

fact obviously leads to important cancellations for the normalization and for the

decay constant. This was already emphasized in an earlier quark model [31],

where the e�ects of di�erent estimates for the relation between the upper and

lower component on weak decay constants for pion and kaon were analyzed. For a

comparison with nonrelativistic decay formulas compare Sec.4.3.4. Although the

pion amplitude has signi�cant contributions up to momenta of about 4GeV/c,

the main part e.g. of the integral for the �

0

decay width comes from momenta of

about 150 MeV/c (as this is the scale of nonstrange and pion mass).

For the � !  decay we also �nd excellent agreement with experiment,

whereas the process for the �

0

is underestimated. The results depend strongly on

the correct n�n- s�s mixing, as e.g. for the � we obtain a negative interference. The

mixing (due to the instanton induced interaction) can be compared to a simple
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Table 4.5: Comparison of experimental and calculated meson decay observables

for the Salpeter models V1, V2, S and nonrelativistic results NR

Mesonic decay experimental [47] V1 V2 S NR

f

�

[MeV] 131.7� 0.2 130 260 200 1440

f

K

[MeV] 160.6 � 1.4 180 300 210 730

�(�

0

! ) [eV] 7.8 � 0.5 7.6 4.0 4.4 30000

�(� ! ) [eV] 460 � 5 440 220 220 18500

�(�

0

! ) [eV] 4510 � 260 2900 2030 1390 750

�(�! e

+

e

�

) [keV] 6.8 � 0.3 6.8 28 8.1 8.95

�(! ! e

+

e

�

) [keV] 0.60 � 0.02 0.73 3.1 0.87 0.96

�(�! e

+

e

�

) [keV] 1.37 � 0.05 1.24 4.5 1.50 2.06

Table 4.6: �; �

0

mixing parameters from BS norm (see eq.(2.31)) compared to

data calculated from experimental J/	 decays [3]

Meson mixing coe�cient J/	 decay V1 V2 S

�(547) jX

�

j 0.63�0.06 0.71 0.71 0.70

jY

�

j 0.83�0.13 0.70 0.70 0.72

�

0

(958) jX

�

0

j 0.36�0.05 0.85 0.78 0.83

jY

�

0

j 0.72�0.12 0.52 0.63 0.55

model given by Rosner [59]. The physical mesons are expanded in a basis of three

states jN >= 1=

p

2 ju�u+ d

�

d >, jS >= js�s > and jG >= jGluonium >:

j� >= X

�

jN > +Y

�

jS > +Z

�

jG > (4.27)

The coe�cients may be estimated from electromagnetic transitions [3]. We com-

pared the results for the absolute values of X and Y in Tab.4.6 with the contri-

butions of the nonstrange and strange part of the amplitude to the relativistic

norm. The results agree well in the case of the �, but not for the �

0

. Experimental

results indicate a larger gluonic component for the �

0

, which could modify the

results.

The leptonic decay widths for the vector mesons are also in good agreement

with the data. This is essentially due to the small con�nement slope, which

determines the size of these mesons. We conclude that a consistent description of

all the ground state pseudoscalar and vector mesons is possible in this framework.

More observables like electromagnetic transitions or the pion form factor are

calculated in ref.[37] to substantiate this statement.

The agreement with experimental data for model V2, which was designed
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to reproduce the higher resonances and Regge trajectories, is only of a qualita-

tive character (Tab.4.5). Decay constants and photon decay widths disagree by

about 50%, which is essentially due to the large quark mass. The leptonic de-

cay widths of the vector mesons are overestimated due to the steep con�nement,

which enlarges the amplitudes at the origin in coordinate space.

Comparing the two parameter sets for vector con�nement we �nd: V1 with

light quark masses gives a quantitative description for the vector and pseudoscalar

ground states, but only a qualitative picture of the Regge behavior. For V2 with

large quark masses the situation is opposite. This might be an indication that

for large distances the mass of the quarks e�ectively should increase due to some

additional contribution from the energy of a gluon string connecting the quarks.

For model S we �nd good agreement for the vector mesons, the description of

the pseudoscalars being of moderate quality. Although it is possible to describe

the latter with a smaller quark mass, we could not obtain a quantitative adjust-

ment for both 0

�

and 1

�

mesons with a scalar con�ning kernel. This is mainly

due to the strong inuence of the instability for small quark masses discussed

above.
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Figure 4.7: Radial Pion amplitudes pR

(+)

00

(p) (upper component, upper curve)
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(p) (lower component, lower curve) with the parameters of model V1
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Figure 4.8: Radial Rho amplitudes pR
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solid curve), pR
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lower dashed curve) with the parameters of model V1
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4.3.4 Comparison with nonrelativistic results

In order to estimate the relevance of relativistic e�ects in our model it is useful to

compare the results with the corresponding values computed in the nonrelativistic

quark model. In the nonrelativistic limit the Salpeter equation reduces to the

usual Schr�odinger equation with the potential given by

V = a

c

+ b

c

r + 8G

f

2

f

0

1

;f

1

f

0

2

�

3

(~r) (4.28)

where the �-function again has to be regularized according to eq.(4.26). The mass

spectra for this hamiltonian have already been investigated in an earlier work [8]

being in good agreement with experiment. In the following we will use the wave

functions  (~r) of ref.[8] to calculate the decay observables using the well known

formulas [5, 57, 28]

f

�

=

2

p

3

p

M

j (0)j (4.29)

�(1

�

! l

+

l

�

) =

16� �

2

~e

2

q

M

2

j (0)j

2

(4.30)

�(0

�

! ) =

12� �

2

~e

4

q

m

2

q

j (0)j

2

(4.31)

(4.32)

HereM is the (experimental) meson mass, m

q

is the quark mass, � = 1=137 and

~e

q

gives the quark charge in units of the proton charge according to the avor

composition of the meson. The results for these decays are given in Tab.4.5. One

�nds that leptonic decays can already be described reasonably in a nonrelativis-

tic framework. On the other hand the weak decay constants and especially the

two photon decay widths are far away from the experimental data. This discrep-

ancy cannot be cured by changing the parameters within reasonable limits. We

therefore conclude that a relativistic treatment is essential for the description of

pseudoscalar mesons.
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4.3.5 Discussion of the gap equations

Due to the process of chiral symmetry breaking the 't Hooft interaction leads

to relations for the e�ective constituent quark masses m

n

; m

s

and the coupling

constants g; g

0

as given in eqs.(4.4),(4.8). In order to check if these relations are

qualitatively compatible with the �tted parameter sets we use �

QCD

= 200MeV ,

m

0

n

= 9MeV , m

0

s

= 150MeV , h�q

n

q

n

i = (�225MeV )

3

and h�q

s

q

s

i = 0:8 h�q

n

q

n

i

(compare ref.[51]) and plot m

n

; m

s

; g and g

0

as functions of the instanton size

cuto� �

c

as shown in Figs.4.9,4.10. Because of the delicate dependence on the

condensate values and due to the regularization procedure in the 't Hooft kernel

one should not expect quantitative agreement with the �tted parameter sets.

For �

c

= 0:408 fm one �nds e.g. m

n

= 170MeV , m

s

= 270MeV , g =

79MeV fm

3

and g

0

= 58MeV fm

3

. Apart from the strange quark mass which

comes out too small, the other parameters are quite close to the values of param-

eter set V1. Note that �

c

is almost equal to the e�ective range � of the 't Hooft

interaction. Furthermore we �nd that g

0

is smaller than g for all values of �

c

as

is the case for all three parameter sets.

4.4 Summary and conclusion

We investigated di�erent models for light mesons as bound states of quark and

antiquark within the Salpeter framework. As an important result we �nd that the

masses, weak decay constants and two photon widths of the light pseudoscalar

mesons (�; �; K) can be described even quantitatively. With the same parame-

ters also the masses and leptonic decays of the vector mesons can be reproduced.

The pseudoscalar mesons are dominantly a�ected by an instanton induced

interaction, which apart from the �; � splitting gives the correct n�n�; s�s�mixing

for the � meson. The self energy corrections and coupling constants due to the

resulting chiral symmetry breaking are compatible with the parameters we used

for the quark antiquark interaction. In contrast to nonrelativistic calculations

instanton e�ects appear also in the scalar sector.

Concerning the nature of the con�nement kernel we �nd that a vector type

interaction can reproduce the Regge trajectories, although with a larger quark

mass than the one needed to describe the lowest lying mesons. This might be an

indication that due to string e�ects the quark mass should increase with distance.

For a scalar kernel quasistable solutions exist only for relatively large quark

masses and weak con�nement. With these parameters, however, one cannot re-

produce quantitatively the ground state mesons or the Regge trajectories. Nev-

ertheless the spin orbit splitting indicates the existence of a scalar component in

the interaction in order to cancel the large spin orbit splittings coming from the

vector structure (compare also chapter 6).
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Chapter 5

Spectra and decays for heavy

quarkonia

The heavy quarkonia (Charmonium c�c and Bottomonium b

�

b) are investigated

in the framework of the instantaneous BS-equation (Salpeter equation). We

parametrize con�nement alternatively by a linearly rizing scalar or a vector inter-

action kernel and take into account the one-gluon-exchange (OGE) interaction in

the instantaneous approximation. We calculate mass spectra as well as leptonic

and two-photon decay widths. Our results show that a reasonable description of

the experimental data can be obtained with both spin structures for the con�ning

kernel.

5.1 Introduction

In the past the heavy quarkonia have usually been investigated in the framework

of the nonrelativistic quark model (we don't give a list of the many contributions

here; see e.g. [5, 22, 32] and references therein). Because of the large masses

of the c and b quark the nonrelativistic treatment of the bound state problem

is expected to be a good �rst approximation. However in charmonium one still

�nds typical values of v=c � 0:4 (see e.g. ref.[23]), so that relativistic e�ects

become important especially for electroweak decay properties, as has been shown

in ref.[5].

Relativistic calculations for the heavy quarkonia have been given by Gara

et.al. [17] in the framework of the reduced Salpeter equation, and by Murota [40]

who uses the (full) Salpeter equation. Unfortunately, both references only give

the mass spectra and do not calculate any decay widths, which should be most

sensitive to relativistic e�ects.

In the present chapter we obtain the mass spectra as well as the leptonic and

two-photon decay widths (taken from ref.[37], compare chapter 2.5 for the ex-

plicit formulas) in the framework of the (full) Salpeter equation. We parametrize
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con�nement by a linearly rizing scalar or a vector interaction kernel and take into

account the one-gluon-exchange (OGE) interaction in the instantaneous approx-

imation. Here the 't Hooft interaction used for the description of light mesons as

shown in chapter 4 has been replaced by the instantaneous OGE. There are two

reasons for this modi�cation:

� The 't Hooft interaction is based on the assumption of massless quarks

[24, 62] and therefore cannot easily be extended to heavy quarks. However

one can show that in analogy to the �-mesons the 't Hooft interaction does

not give �rst order contributions to the interaction between two charmed

or bottom quarks because of the avor antisymmetry of the interaction.

E�ects can only occur via avor mixing in second order, but the large dif-

ferences in the meson masses suppress such contributions. Furthermore

there are no experimental indications for other avors contributing signi�-

cantly to c�c and b

�

b mesons.

� A good description for the mass spectra of the heavy quarkonia can already

be obtained in the nonrelativistic quark model using a linear con�nement

potential plus the nonrelativistic reduction of the OGE interaction (i.e. the

well-known Fermi-Breit potential). Therefore the OGE is the natural choice

also for the Salpeter equation. For light quarks, however, the OGE leads

to degenerate � and � masses in clear contradiction with experiment.

It should be noted that the instability of the Salpeter equation with a scalar

con�nement as discussed in chapter 4 is invisible here for any reasonable number

of basis states (compare �g.5.3). We therefore think that it is legitimate to

compare these (quasistable) solutions to the experimental meson masses.

The chapter is organized as follows: In Sec.5.2 the explicit form of the inter-

action kernel is given. The model parameters and results are discussed in Sec.5.3,

and we give some concluding remarks in Sec.5.4.

5.2 The Bethe-Salpeter kernel

The interaction kernel is of the form

[V (~p; ~p

0

)�(~p

0

)] = [V

C

(~p; ~p

0

)�(~p

0

)] + [V

G

(~p; ~p

0

)�(~p

0

)] (5.1)

where the scalar or vector con�ning part is given by

h

V

S

C

(~p; ~p

0

)�(~p

0

)

i

= V

C

((~p� ~p

0

)

2

)�(~p

0

) (5.2)

h

V

V

C

(~p; ~p

0

)�(~p

0

)

i

= �V

C

((~p� ~p

0

)

2

) 

0

�(~p

0

) 

0

(5.3)

Here V

C

is a scalar function with a fourier transform V

F

C

(r) = a

c

+ b

c

r.
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For the OGE kernel V

G

we have to note that it is not possible to formulate this

term in a gauge-invariant way, since for a gauge-invariant kernel it is essential

to take into account crossed gluon diagrams. However, for such diagrams the

instantaneous approximation cannot be applied in a usefull way. Furthermore,

also in a noninstantaneous treatment the incorporation of crossed diagrams is

technically very di�cult, so that it would be very hard to go beyond the gauge-

dependent ladder approximation.

In view of the instantaneous treatment of the OGE the natural gauge for the

gluon propagator is the Coulomb gauge, which will be applied in the following.

The advantage of this gauge is the fact that the gluon propagator given by



�

D

��

(q) 

�

= 4�

 



0



0

~q

2

+

~~ � (~q̂)(~q̂)

q

2

+ i�

!

(5.4)

with q̂ = ~q=j~qj is already instantaneous in its component D

00

(q). In the instan-

taneous approximation we substitute q

2

by �~q

2

. The OGE kernel (see �g.5.1)

then reads [40, 66]

h

V

C

G

(~p; ~p

0

)�(~p

0

)

i

= V

G

((~p � ~p

0

)

2

)

�

�



0

�(~p

0

) 

0

�

1

2

(~�(~p

0

)~ + (~x̂)�(~p

0

) (~x̂) )

�

(5.5)

We don't give the operator x̂ = ~x=j~xj explicitely in momentum space since the

K
OGE

=

Figure 5.1: The One-Gluon-Exchange approximation to the interaction kernel

corresponding matrix elementswill be evaluated in coordinate space, see appendix

D.2.4. Also the matrix elements of the scalar function V

G

(~q

2

) will be evaluated

in coordinate space. For the numerical calculation we therefore use its Fourier

transform V

F

G

(r) which will be obtained in the following (the result is given in

eq.(5.14)).
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saturation value which is chosen to be �

sat

= 0:4 in this plot.

In momentum space V

G

is given by

V

G

(~q

2

) = 4�

4

3

�

s

(~q

2

)

~q

2

(5.6)

In QCD the running coupling constant for Q

2

= �q

2

� �

QCD

is given by [47]

�

run

s

(Q

2

) =

A

ln(Q

2

=�

2

QCD

)

 

1�B

ln (ln(Q

2

=�

2

QCD

))

ln(Q

2

=�

2

QCD

)

!

+ : : : (5.7)

with

A =

12�

33 � 2n

f

; B =

6 (153 � 19n

f

)

(33 � 2n

f

)

2

(5.8)

where in the instantaneous approximation we set Q

2

= ~q

2

. We will now assume

that �

s

(~q

2

) behaves like �

run

s

(~q

2

) for ~q

2

> ~q

2

0

> �

2

QCD

and reaches a saturation

value �

sat

for ~q

2

� ~q

2

0

, where ~q

2

0

is determined by the condition that �

s

(~q

2

) is a

continuous function (compare �g.5.2).

Unfortunately the Fourier transform of the OGE kernel given by

V

F

G

(r) =

Z

d

3

q

(2�)

3

e

i~q~r

V

G

(~q

2

)

=

1

2�

2

r

Z

1

0

j~qj dj~qj sin(j~qjr)V

G

(~q

2

) (5.9)

can only be calculated numerically. On the other hand, it is not really neccessary

to use the exact V

F

G

(r) as given above, since the form of �

s

(~q

2

) is quite arbitrary
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for intermediate values of ~q

2

. Therefore we will use eq.(5.9) to obtain analytic

expressions for V

F

G

(r) in the short and long distance region corresponding to

~q

2

� �

2

QCD

and to ~q

2

� �

2

QCD

, and �nally give an expression that has the

correct limits for small and large r and gives a smooth interpolation in between.

For r � �

�1

QCD

only small ~q

2

are important in the Fourier integral and we can

set �

s

(~q

2

) = �

sat

so that

V

F

G

(r) =

4

3

�

sat

r

for r � �

�1

QCD

(5.10)

Analogously for r � �

�1

QCD

we set �

s

(~q

2

) = �

run

s

(~q

2

). The corresponding Fourier

integral can be performed analytically for small r as shown in appendix E. The

result reads

V

F

G

(r) �

4

3

�

run

s

(r)

r

for r � �

�1

QCD

with (5.11)

�

run

s

(r) =

A

2 ln(e

�

=a)

"

1�B

ln (2 ln(1=a))

2 ln(1=a)

#

with a = �

QCD

r (5.12)

where  = 0:577215 : : : is the Euler-Mascheroni constant. A smooth interpolation

between these two limiting cases is given by

�

s

(r) =

A

2 ln (e

�(+�a)

=a+ e

A=(2�

sat

)

)

"

1�B

ln (2 ln(e

�~�a

=a + e

1=2

))

2 ln(e

��a

=a+ e

B=2

)

#

(5.13)

(see ref.[66] for the case B = 0), where we set � = 4 and ~� = 20 in order to

obtain a good approximation of eq.(5.9) as shown in �g.5.4.

The Salpeter equation with V

F

G

(r) = (�4=3)�

s

(r)=r is well de�ned. This is

in contrast to the corresponding Schr�odinger equation where the terms of or-

der ~p

2

=m

2

like the spin-spin and spin-orbit interaction lead to a collaps of the

wavefunction into the origin, i.e. the Fermi-Breit hamiltonian is unbound from

below. This defect is usually cured by using �rst order perturbation theory or by

regularizing the 1=r potential for small r.

For the Salpeter equation this problem disappears due to the relativistic treat-

ment of the quark motion. However, most Salpeter amplitudes are divergent for

r ! 0, as has been shown explicitely by Murota [40] for a �xed coupling con-

stant. For a running coupling constant this divergence is less pronounced, but

still present. The amplitudes are normalizable, but problems occur for decay

observables like the leptonic decay widths, which depend on the value of the am-

plitudes at r ! 0. The easiest way to cure these divergencies is to regularize the

OGE kernel for small r. We therefore will use the regularized potential

V

F

G

(r) = �

4

3

�

s

(r)

r

for r > r

0

V

F

G

(r) = a

G

r

2

+ b

G

for r � r

0

(5.14)
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Figure 5.3: Dependence of the calculated Salpeter eigenvalues for the �

c

ground

state and �rst excited state on the number of basis states taken into account.

The solid curves correspond to the scalar con�nement, the dashed curves to the

vector con�nement. The parameters are given in tab.5.1. The radial part of the

basis states in momentum space is given by R

nL

(y) = N

nL

y

L

L

2L+2

n

(y) e

�y=2

with

y = p� and L

2L+2

n

(y) being a Laguerre polynomial. We used � = 2:0 fm here.

with a

G

and b

G

determined by the condition that V

F

G

(r) and its �rst derivative

are continuous functions. The dependence of �

s

(r) given by eq.(5.13) on �

QCD

and n

f

is not large and can be compensated for by modifying � and �

sat

. We will

use �

QCD

= 200MeV and n

f

= 3 for our calculation. A plot of V

F

G

(r) is shown

in �g.5.5. The dependence of the mass spectra on the regularization parameter

r

0

is very weak as shown in �g.5.11, so that the di�erences in the mass spectra

calculated with the regularized and unregularized potential are quite small. For

our further calculation we will take r

0

= 0:1 fm.
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Figure 5.4: The running coupling constant �

s

(r) (solid curve) as given in

eq.(5.13). The dashed curve shows the result of the numerical Fourier trans-

formation as given in eq.(5.9), i.e. V

F

G

(r) = ((4=3)=r). In this plot �

sat

= 0:4 is

used.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r (fm)

-1200

-1000

-800

-600

-400

-200

0

O
G

E
 p

ot
en

tia
ls

Figure 5.5: The regularized potential V

F

G

(r) as given in eq.(5.14) (solid upper

curve) compared to the unregularized potential (dashed curve) and the potential

(�4=3)�

sat

=r (lower curve) with �

sat

= 0:4.
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5.3 Results and discussion

5.3.1 The model parameters

In order to obtain the best possible description for the mass spectra of the heavy

quarkonia the model parameters have been determined independently from the

parameter sets used for the light mesons in chapter 4. The reason for this proce-

dure is the fact that the only two parameters common for heavy and light mesons

(i.e. the con�nement parameters a

c

and b

c

) are not well determined for the light

mesons because of the di�culties to describe Regge trajectories and decay widths

simultaneously. Note that for a scalar con�nement it was generally not possible

to describe the Regge trajectories, so that the value of b

c

is quite arbitrary for

this case.

The situation will be di�erent in chapter 6, where also the heavy-light q�q-

systems (D-mesons) are considered. Therefore only one parameter set will be

used in chapter 6 to describe heavy, light and D-mesons simultaneously.

As in chapter 4 we investigate two di�erent models of the con�nement kernel:

1) a scalar 1
 1- and 2) a vector 

0


 

0

-structure.

The parameters used are the charm and bottom quark masses m

c

and m

b

,

the o�set a

c

and slope b

c

of the con�nement interaction and the saturation value

�

sat

for �

s

(r) used in eq.(5.13). These �ve parameters have been adjusted to the

mass spectra by minimizing a �

2

that incorporates all known charmonium and

bottomonium ground states and �rst excited states. The obtained parameter sets

are given in tab.5.1 for the scalar (S) and the vector (V) con�nement.

It is remarkable that analogously to the light mesons the slope of the con�ning

potential comes out much larger in than in nonrelativistic models, where a typical

value is b

c

� 700 MeV/fm [5]. The main di�erence between the two parameter

sets is given by the larger value of �

sat

for the scalar con�nement. This can

be easily understood from the nonrelativistic picture where the spin-orbit force

coming from the scalar con�nement conteracts the OGE spin-orbit force, whereas

for the vector con�nement both spin-orbit forces a�ect the mass spectra in the

same way. Therefore, in order to compensate the reduced spin-orbit splitting of

the �-states in the scalar con�ning case, the strength of the OGE interaction has

to be increased. Compared to nonrelativistic calculations (see e.g. [5]) we �nd

smaller quark masses m

c

; m

b

and a larger con�nement slope b

c

.

5.3.2 Mass spectra

The mass spectra of Charmonium are given in �gs.5.6,5.7, the mass spectra of

Bottomonium are shown in �gs.5.8,5.9. The experimental data are usually taken

from the Particle Data Group [47]. For the recent measurement of the mass of the

charmonium

1

P

1

state (J

PC

= 1

+�

) in p�p annihilations by the E760 collaboration

at Fermilab see refs.[2, 22]. We �nd that both con�nement spin structures give
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Table 5.1: Model parameters for scalar and vector con�nement

Parameter scalar vector

m

c

[MeV] 1507 1631

m

b

[MeV] 4857 5005

a

c

[MeV] -252 -640

b

c

[MeV/fm] 1270 1291

�

sat

0.492 0.365

a reasonable overall description of the experimental mass spectra. The spin-spin

and spin-orbit splittings are slightly better described for the vector con�nement,

whereas the radial excitations of the vector mesons are slightly better for the

scalar con�nement. However, we feel that these di�erences are not signi�cant

enough to decide wether the Lorentz nature of con�nement should be of the

scalar or vector type. This is in contrast to the nonrelativistic quark model

where a scalar con�nement gives the better results.

Allthough the description of the mass spectra can be considered quite satis-

factory, there remain some characteristic deviations which indicate the relevance

of retardation e�ects and higher order diagrams in the interaction kernel. We

�nd that the binding of the �

c

meson tends to be quite large. As a consequence it

is not possible for a scalar con�nement to simultaneously describe the hyper�ne

splitting �

c

$ J= and the �ne splitting �

c0

$ �

c1

$ �

c2

with higher accuracy.

Furthermore the level spacing between the s-wave states of the vector mesons is

overestimated for both spin structures, whereas the mass di�erences of s-waves

and d-waves is underestimated, especially for higher radial excitations. It is in-

teresting to note that deviations have also been found by Gara et.al [17] in the

framework of the reduced Salpeter equation. They conclude that these di�cul-

ties are mainly due to the omission of the kinetic energy of the rotating ux tube

connecting the quarks. The ommission of the rotating ux tube energy is also

made responsible for the di�culties in describing the Regge trajectories of the

light mesons, as found in their model. This is in qualitative agreement with our

results.

We would like to mention that the use of the Feynman gauge given by

h

V

F

G

(~p; ~p

0

)�(~p

0

)

i

= V

G

((~p � ~p

0

)

2

) 

�

�(~p

0

) 

�

(5.15)

does not give a satisfactory description of the mass spectra, since the binding

energy of the �

c

meson is overestimated, as can be seen in �g.5.10. It turns

out that it is not possible to compensate for this e�ect in a satisfying way by

readjusting the model parameters. The e�ect of the gauge on the other states is

less important.
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Figure 5.6: Charmoniummass spectrum for a scalar con�nement with the param-

eters given in tab.5.1. The left column for each meson shows the experimental

mass, where the shaded areas correspond to the full decay widths.
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Figure 5.7: Same as �g.5.6 for a vector con�nement.
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Figure 5.8: Bottomonium mass spectrum for a scalar con�nement with the pa-

rameters given in tab.5.1. The left column for each meson shows the experimental

mass, where the shaded areas correspond to the full decay widths.
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Figure 5.9: Same as �g.5.8 for a vector con�nement.
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Figure 5.10: The charmonium ground states �

c

; J= ; �

c0

; �

c1

; �

c2

(from bottom

to top). The coloums correspond (from the left) to the experimental masses,

the masses obtained with a scalar con�nement using the Coulomb (SC) and the

Feynman gauge (SF), and the same for a vector con�nement, i.e. (VC) and

(VF). For the Feynman gauge the same parameters have been used as for the

corresponding Coulomb gauge, see tab.5.1.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
r0

2800

3000

3200

3400

3600

m
as

s 
(M

eV
)

Figure 5.11: Dependence of the charmonium ground state masses �

c

, J= , �

c0

,

�

c1

and �

c2

(from bottom to top) on the regularization parameter r

0

shown for a

scalar con�nement with the parameters given in tab.5.1.
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Table 5.2: Comparison of experimental and calculated decay widths for scalar (S)

and vector (V) con�nement. The nonrelativistic results (NR) for the c�c and b

�

b

leptonic decay widths are taken from [5] (version B of the model, nonrelativistic

decay formula). The nonrelativistic results for �

c

(1S) !  are taken from

ref.[53].

decay experimental [47] S V NR

�(J= (1S) ! e

+

e

�

) [keV] 5.36 � 0.29 8.05 9.21 12.2

�( (2S)! e

+

e

�

) [keV] 2.14 � 0.21 4.30 5.87 4.63

�( (2D) ! e

+

e

�

) [keV] 0.26 � 0.04 0.13 0.09 0.005

�( (3S)! e

+

e

�

) [keV] 0.75 � 0.15 3.05 4.81 3.20

�( (3D) ! e

+

e

�

) [keV] 0.77 � 0.23 0.23 0.14 0.01

�( (4S)! e

+

e

�

) [keV] 0.47 � 0.10 2.16 3.95 2.41

�(�(1S)! e

+

e

�

) [keV] 1.34 � 0.04 0.80 0.84 1.49

�(�(2S)! e

+

e

�

) [keV] 0.59 � 0.03 0.54 0.57 0.61

�(�(3S)! e

+

e

�

) [keV] 0.44 � 0.03 0.44 0.47 0.39

�(�(4S)! e

+

e

�

) [keV] 0.24 � 0.05 0.40 0.49 0.33

�(�

c

(1S)! 2) [keV] 6.6 � 2.4 4.2 3.8 19.1

5.3.3 Decay observables

With the method outlined in chapter 4 leptonic decay widths for the vector

mesons and the decay width for �

c

! 2  have been calculated with the param-

eters of the previous section (see ref.[37]). As shown in tab.5.2 there are only

small di�erences between the two spin structures. The leptonic decay widths of

the c�c s-wave vector mesons are generally too large by a factor of � 1:5 for the

J= (1S) and more for the higher radial excitations, whereas they are too small

for the �(1S). We were not able to adjust the model parameters in order to

�nd a better agreement with the experimental widths, since an increased lep-

tonic width of the �(1S) is usually connected with an increased J= (1S) width.

Furthermore the leptonic widths turned out to be quite insensitive to changes of

the parameters. Note that the nonrelativistic results for the leptonic b

�

b widths

are quite good.

At this point we would like to note that the commonly used QCD correction

factor (1 � 16�

s

=(3�)) [4] does obviously not improve these results, since the

leptonic widths of the J= (1S) and the �(1S) would be changed in the same

way.

The leptonic widths of the radially excited � states come out close to the

experimental data. The same holds for the decay �

c

! 2, in contrast to nonrel-

ativistic results. The leptonic widths of the charmonium d-wave states are too

small by a factor � 2.
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5.4 Summary and conclusion

We investigated the heavy quarkonia in the framework of the Salpeter equation

with a linear scalar or vector con�nement plus the OGE interaction. For the mass

spectra we obtained a reasonable agreement with the experimental meson masses

both for a scalar as well as for a vector con�ning kernel. This is in contrast to

the nonrelativistic quark model where a scalar con�nement is prefered. However,

the mass spectra show some moderate deviations which indicate the relevance of

retardation e�ects and higher order diagrams beyond the OGE approximation.

For the leptonic widths we �nd too large values for the J= and its radial

excitation, whereas the leptonic width of the �(1S) is too small. The leptonic

widths of the �(2S) and �(3S) and the two-photon width of the �

c

are in good

agreement with experiment.

74



Chapter 6

Simultaneous description of light,

heavy and heavy-light mesons

In the framework of the instantaneous Bethe-Salpeter equation we give a si-

multaneous description of light, heavy and heavy-light mesons. The interaction

kernel consists of a scalar plus vector linear con�ning potential and a residual

q�q-interaction as shown in the previous chapters 4 and 5, i.e. for the light mesons

we use the 't Hooft interaction, whereas for the heavy quarkonia (c�c and b

�

b) and

the heavy-light mesons (c�x and b�x with x = u; d; s) the OGE residual interaction

is applied.

6.1 Introduction

In chapter 4 the framework of the Salpeter equation has been applied to calculate

mass spectra and decay widths of light mesons, where the interaction kernel has

been given by a combination of a linear (scalar or vector) con�ning potential and

an Instanton-induced residual q�q-interaction ('t Hooft interaction). For the heavy

quarkonia (c�c and b

�

b) the mass spectra and decay widths have been calculated

independently in chapter 5, where the 't Hooft interaction has been substituted

by the residual One-Gluon-Exchange (OGE) in the BS-kernel.

In the present chapter we will investigate to what extent it is possible to

describe light and heavy mesons simultaneously (i.e. with only one parameter

set) using the interaction kernels given above, i.e. 't Hooft interaction for light

quarks and OGE for heavy quarkonia.

Within this framework it is also possible to investigate the quarkonia consist-

ing of one heavy and one light quark, i.e. the various D-mesons (and B-mesons;

they will not always be adressed seperately in the following). These mesons have

been of high interest in the recent years, especially in the context of the heavy

quark e�ective theory (see e.g. [45] and references therein) which analyses the

limitm

c

; m

b

!1 in QCD. A detailed quark model calculation of D-meson mass
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spectra as well as various weak decay widths and formfactors has recently been

given by S.Resag and M.Beyer [52]. The Dirac equation has been applied to

D-meson mass spectra e.g. by V.D.Mur et.al. [39], whereas P.C.Tiemeijer and

J.A.Tjon [66] compare di�erent quasipotential equations. In the present work we

will focus on the mass spectra and the weak decay constants for the D-mesons.

The Salpeter amplitudes obtained then provide a basis for the further investiga-

tion of other weak decay properties. Activities into this direction are planed for

the future (see also refs.[37, 52]).

The chapter is organized as follows: In Sec.6.2 the form of the interaction

kernel will be reviewed according to the chapters 4 and 5. The model parameters

and results are discussed in Sec.6.3, and concluding remarks are made in Sec.6.4.

6.2 The Bethe-Salpeter kernel

The interaction kernel used in the following is given by

[V (~p; ~p

0

)�(~p

0

)] = [V

C

(~p; ~p

0

)�(~p

0

)] + [V

res

(~p; ~p

0

)�(~p

0

)] (6.1)

where the spin structure of the con�ning part is given by a combination of scalar

plus vector con�nement as

[V

C

(~p; ~p

0

)�(~p

0

)] = V

C

((~p� ~p

0

)

2

)

h

(1 � �)�(~p

0

) + � (�

0

�(~p

0

) 

0

)

i

(6.2)

Here V

C

is a scalar function which has the fourier transform V

F

C

(r) = a

c

+ b

c

r

(see also chapters 4 and 5). The determination of the con�ning spin structure is

a delicate issue within the present framework. As shown in chapter 5 the results

for the heavy quarkonia do not give clear indications in this context. From the

light mesons (see chapter 4) we know that a pure scalar con�nement (� = 0) leads

to di�culties for higher angular momenta (Regge trajectories) and higher radial

excitations. These di�culties were connected with an instability of the Salpeter

equation.

In the framework presented in this chapter we �nd on the other hand that

the observed splitting of the D

1

(2420) with J

P

= 1

+

and D

�

2

(2460) with J

P

= 2

+

cannot be described with a pure vector con�nement (� = 1) since the 1

+

ground

state then would have a much smaller mass than the 2

+

ground state, see �g.6.7.

The same argument holds for the corresponding splittings of the light mesons

a

1

$ a

2

and K

1

$ K

�

2

(see �g.6.2), as already mentioned in chapter 4. Therefore

the appropriate choice within the presented framework is given by mixture of

scalar plus vector con�nement. We will take � = 0:5 for the mixing parameter in

the following. For this choice one has

1

2

�

� � 

0

� 

0

�

=

 

0 �

++

�

��

0

!

(6.3)
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(compare eq.(2.12) for the notation), i.e. the con�ning kernel does not mix posi-

tive and negative energies. Note that generally the instability problem disappears

for � � 0:5.

For the light mesons (i.e. no c or b quark) the residual interaction is given by

the regularized 't Hooft interaction, which has already been studied in detail in

chapter 4. We recall that V

res

= V

T

with

[V

T

(~p; ~p

0

)�(~p

0

)]

f

1

f

2

= 4

X

f

0

1

f

0

2

G

f

2

f

0

1

;f

1

f

0

2

e

�

1

4

�

2

(~p�~p

0

)

2

�

h

1 tr

�

�

f

0

1

f

0

2

(~p

0

)

�

+ 

5

tr

�

�

f

0

1

f

0

2

(~p

0

) 

5

� i

(6.4)

with f

i

= u; d; s � 1; 2; 3 and the de�nition

G

f

3

f

4

;f

1

f

2

:=

3

8

3

X

f

5

=1

g

e�

(f

5

) �

f

5

f

3

f

4

�

f

5

f

1

f

2

(6.5)

Since we assume SU(2)-avor invariance of the interaction we set

g :=

3

8

g

e�

(s) ; g

0

:=

3

8

g

e�

(n) (6.6)

where s stands for strange and n stands for nonstrange (u,d) avor. The results

for G

f

2

f

3

;f

1

f

4

have been given in Tab.4.2. The coupling constants g and g

0

are

treated as free parameters in the following. As noted in chapter 4 the 't Hooft

interaction only acts on the light scalar and pseudoscalar mesons J

�

P

= 0

�

.

For heavy quarkonia and D-mesons the OGE residual interaction in the Coulomb

gauge is applied (compare chapter 5), i.e. V

res

= V

C

G

with

h

V

C

G

(~p; ~p

0

)�(~p

0

)

i

= V

G

((~p� ~p

0

)

2

) (6.7)
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0

�(~p
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0

�

1

2

(~�(~p

0

)~ + (~x̂)�(~p

0

) (~x̂) )

�

(6.8)

where the regularized OGE potential V

G

((~p� ~p

0

)

2

) has the Fourier transform

V

F

G

(r) = �

4

3

�

s

(r)

r

for r > r

0

V

F

G

(r) = a

G

r

2

+ b

G

for r � r

0

(6.9)

with a

G

and b

G

determined by the condition that V

F

G

(r) and its �rst derivative

are continuous functions and r

0

= 0:1 fm. As shown in detail in chapter 5 the

running coupling constant is given by

�

s

(r) =

A

2 ln (e

�(+�a)

=a+ e

A=(2�

sat

)

)

"

1�B

ln (2 ln(e

�~�a

=a+ e

1=2

))

2 ln(e

��a

=a+ e

B=2

)

#

(6.10)
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with a = �

QCD

r and

A =

12�

33 � 2n

f

; B =

6 (153 � 19n

f

)

(33 � 2n

f

)

2

(6.11)

where we set � = 4, ~� = 20 and use �

QCD

= 200MeV and n

f

= 3 for our

calculation.

The reason for these special choices for the residual q�q interactions have al-

ready been discussed in chapter 5 for heavy and light mesons. For D-mesons the

situation is a priori not that clear since in principle the 't Hooft interaction can

act on D-mesons in the same way as on K-mesons. However, there is the more

practically motivated objection that the present form of the 't Hooft interaction

is based on the assumption of massless quarks and thus cannot easily be extended

to heavy quarks. Furthermore we expect that possible e�ects of the 't Hooft in-

teraction on the D-mesons should be small in analogy to the K-meson which is

already less a�ected than the �-meson. Therefore in the following we will assume

that D-mesons are only a�ected by the OGE interaction.

There still is the possibility to apply the OGE also to the light mesons in

addition to the 't Hooft interaction (as noted in chapters 4 and 5, the OGE

alone cannot reproduce the observed � $ � splitting). We did not make use of

this possibility since it turnes out that the 't Hooft interaction alone is already

su�cient to give good results for the light pseudoscalar mesons.

6.3 Results and discussion

6.3.1 The model parameters

The parameters of the model are the quark masses m

n

, m

s

, m

c

, m

b

(with n =

u; d), the con�nement slope b

c

and o�set a

c

, the 't Hooft coupling constants g; g

0

and the OGE saturation value �

sat

for the strong coupling constant. For the

e�ective range � of the 't Hooft interaction the same value has been used as in

chapter 4, i.e. � = 0:42 fm. Therefore in total we have nine parameters that

have to be adjusted to the experimental mass spectra. This has been done for the

parameters except for g and g

0

by a �

2

�tting procedure, where all known c�c; b

�

b

and D-meson ground and �rst excited states as well as the light meson ground

states � and K

�

were taken into account. The 't Hooft couplings g and g

0

have

then been adjusted to the � and K meson masses. The parameter set obtained

is given in tab.6.1.

6.3.2 Mass spectra

The resulting light meson mass spectra are shown in �gs.6.1,6.2. For the heavy

quarkonia the spectra are shown in �gs.6.3,6.4 and the D-meson masses are given
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in �gs.6.5,6.6. Fig.6.8 shows the Regge trajectory for the light isovector mesons

with S = 1, and �g.6.7 illustrates the dependence of the D-meson masses on the

scalar-vector con�nement mixing parameter �.

The overall description of the mass spectra can be considered rather satisfy-

ing having in mind the large number of meson states taken into account. Note

that also the � and �

0

masses can approximately be described due to the avor

structure of the 't Hooft interaction. The quality of the calculated mass spectra

is comparable to results obtained in the nonrelativistic quark model [8, 10, 53],

whereas the relativistic treatment of the quark dynamics leads to a large im-

provement for the calculated decay widths compared to nonrelativistic results

(see tab.6.2 and the next section).

Some problems in describing certain features of the meson mass spectra have

already been adresses in chapters 4 and 5. As shown in �g.6.8 the calculated slope

of the shown Regge trajectory comes out too small, allthough the deviation is still

moderate. Another problem is the calculated splitting of the a

0

and the f

0

meson

due to the 't Hooft interaction, which is in contrast to the almost degenerate

experimental masses of these two mesons (see �g.6.2). It is interesting to note

that in typical nucleon-nucleon potentials an e�ective meson (usually called � or

�

0

meson) with the quantum numbers of the f

0

and a mass of about 550MeV

is needed to describe the experimental data [34, 16]. Allthough our calculation

yields a scalar isoscalar state at 710 MeV, it seemsmore reasonable to identify this

state with the experimentally found f

0

(975) meson. Note that in our calculated

f

0

ground state the s�s avor admixture is about 25%, which might be interesting

in view of the large experimental decay width f

0

! K

�

K.

The description for the heavy quarkonia is approximately of the same quality

as in the treatment of chapter 5. The spin-spin and spin-orbit splittings tend to

be too small for c�c and b

�

b as well as for the D-mesons. This is a consequence of

the small value for �

sat

which is needed for the overall description of the meson

Table 6.1: Model parameters

m

n

[MeV] 221

m

s

[MeV] 492

m

c

[MeV] 1863

m

b

[MeV] 5235

a

c

[MeV] -1286

b

c

[MeV/fm] 1475

g [MeV fm

3

] 33.62

g

0

[MeV fm

3

] 33.02

� [fm] 0.42

�

sat

0.244
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mass spectra. Note that due to the large number of light, heavy and heavy-light

meson states taken into account the overall quality of the meson mass spectrum

depends on the parameters in a quite complex way.

6.3.3 Decay observables

With the Salpeter amplitudes obtained we have calculated weak decay constants,

leptonic and two-photon decay widths using the formalism given in chapter 2

(see ref.[37] for a more detailed analysis of meson decay observables within the

present model). The results are shown in tab.6.2, where they are compared

to the experimental data and to nonrelativistic quark model results. We �nd

good results for the � and K weak decay constants and for the two-photon decay

widths. The comparision with the nonrelativistic results shows the importance of

a relativistic treatment for these decays, even for heavy quarkonia (see �

c

! ).

The D-meson decay constants have not been measured so far, however our results

are in quite good agreement with estimates obtained by J.Rosner [60] from data

on the decays

�

B ! DD

�

s

and

�

B ! D

�

D

�

s

.

Problems occur for the leptonic decay widths, which are generally too large

with the exception of the b

�

b widths which come out too small.

6.4 Summary and conclusion

Within the framework of the Salpeter equation we obtain a reasonable overall

description of light, heavy and D-mesons simultaneously. The interaction kernel

consists of a linear scalar plus vector con�nement and a residual q�q-interaction

given by the instanton-induced 't Hooft interaction for light mesons and by the

instantaneous OGE for heavy and heavy-light mesons. The quality of the calcu-

lated mass spectra is comparable with corresponding results in the nonrelativistic

quark model.

The calculated weak decay constants and two-photon widths are in quite good

agreement with experiment, whereas the obtained leptonic decay widths are not

satisfying.
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Figure 6.1: Mass spectra of the light pseudoscalar and vector mesons. The left

column for each meson shows the experimental masses, where the shaded areas

correspond to the full decay widths.
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corresponds to two degenerate states.
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Figure 6.3: Charmonium mass spectrum. The left column for each meson shows

the experimental masses, where the shaded areas correspond to the full decay

widths.
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Figure 6.4: Same as �g.6.3 for Bottomonium.
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Figure 6.5: D-meson (i.e. c�n) mass spectrum. The left column for each meson
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0
-

1
-

0
-

1
-

0
-

1
-1800

2000
2200
2400
2600
2800
3000
3200
3400

m
as

s 
(M

eV
)

cs bn bs

4800
5000
5200
5400
5600
5800
6000
6200
6400
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the experimental error for the resonance position. The dashed line gives to the

calculated masses.

84



Table 6.2: Comparison of experimental and calculated decay widths. Since ex-

perimental values for the D-meson decay constants are still missing, we give the

results of J.L Rosner [60] who estimates the decay constants from experimental

data on

�

B ! DD

�

s

and

�

B ! D

�

D

�

s

. The nonrelativistic results (NR) for the

light mesons are taken from chapter 4, the nonrelativistic c�c and b

�

b leptonic decay

widths are taken from [5] (version B of the model, nonrelativistic decay formula).

The nonrelativistic results for �

c

(1S) !  and for the weak D-meson decay

constants are taken from ref.[53].

decay experimental [47] calc ref.[60] NR

f

�

[MeV] 131.7 � 0.2 157 1440

f

K

[MeV] 160.6 � 1.4 211 730

f

D

[MeV] <290 259 207 � 60 614

f

D

s

[MeV] 314 259 � 74 674

f

B

[MeV] 208 140 � 40 269

f

B

s

[MeV] 258 175 � 50

�(�

0

! ) [eV] 7.8 � 0.5 6.2 30000

�(� ! ) [eV] 460 � 5 377 18500

�(�

0

! ) [eV] 4510 � 260 2840 750

�(�

c

(1S)! 2) [keV] 6.6 � 2.4 2.3 19.1

�(�! e

+

e

�

) [keV] 6.8 � 0.3 15.9 8.95

�(! ! e

+

e

�

) [keV] 0.60 � 0.02 1.73 0.96

�(�! e

+

e

�

) [keV] 1.37 � 0.05 3.23 2.06

�(J= (1S) ! e

+

e

�

) [keV] 5.36 � 0.29 8.01 12.2

�( (2S)! e

+

e

�

) [keV] 2.14 � 0.21 5.39 4.63

�( (2D)! e

+

e

�

) [keV] 0.26 � 0.04 0.04 0.005

�( (3S)! e

+

e

�

) [keV] 0.75 � 0.15 4.38 3.20

�( (3D)! e

+

e

�

) [keV] 0.77 � 0.23 0.05 0.01

�( (4S)! e

+

e

�

) [keV] 0.47 � 0.10 3.75 2.41

�(�(1S)! e

+

e

�

) [keV] 1.34 � 0.04 0.75 1.49

�(�(2S)! e

+

e

�

) [keV] 0.59 � 0.03 0.53 0.61

�(�(3S)! e

+

e

�

) [keV] 0.44 � 0.03 0.45 0.39

�(�(4S)! e

+

e

�

) [keV] 0.24 � 0.05 0.42 0.33
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Chapter 7

Summary and Conclusion

The aim of the present thesis was to construct a relativistic extension of the

nonrelativistic constituent quark model. Starting from the relativistic Bethe-

Salpeter equation we applied two approximations in order to circumvent some

principal and technical problems which are connected with the appearence of a

relative energy variable p

0

in the BS-equation, i.e.

� the full quark propagator has been replaced by the free propagator with an

e�ective constituent quark mass,

� retardation e�ects in the interaction are neglected (instantaneous or equal

time approximation).

The resulting equation (called Salpeter equation) is independent of p

0

, but still

has the full Dirac structure including positive and negative energies for the quark

and the antiquark. It can be regarded as an intermediate stage between the full

BS equation and the nonrelativistic Schr�odinger equation.

In chapter 2 we investigated the structure of the Salpeter equation for q�q-

bound states in the general case of unequal quark masses and developed a nu-

merical scheme for the calculation of mass spectra and Bethe-Salpeter amplitudes.

Furthermore explicit formulas have been given to calculate some electroweak de-

cays [37].

It turned out that the structure found for the Salpeter equation is very similar

to the structure of the RPA (random phase approximation) equations, which are

a common tool in nonrelativistic many particle theory. In chapter 3 it has been

explicitely shown that Salpeter equation and RPA equations have the same form

and can both be derived using the same approximations.

In chapter 4 the framework of the Salpeter equation has been used to derive

an explicit quark model for light mesons. For the interaction kernel a combination

of a scalar (or alternatively vector) linear con�nement potential and an instanton

induced residual interaction ('t Hooft interaction) has been chosen. It turned

out that for a vector con�nement the parameters can be chosen such that an
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excellent description of the light pseudoscalar and vector ground state mesons

can be achieved including weak decay constants, leptonic and two photon widths.

A comparision with nonrelativistic results revealed the striking improvement for

the weak decay constants and the two-photon widths due to the incorporation of

the full relativistic Dirac structure and the negative energy components.

A scalar con�nement did not give satisfying results due to an instability of

the Salpeter equation, i.e. the bound state masses do not converge to real pos-

itive values if the number of basis states is increased, but �nally become purely

imaginary. For large enough quark masses, however, this instability is practically

virtual and the numerical solutions aquire a quasistable character.

In chapter 5 the heavy quarkonia (c�c and b

�

b) have been investigated, where

con�nement was parametrized in the same way as for the light mesons, and

the 't Hooft interaction has been replaced by the one-gluon exchange (OGE)

interaction. The instability of the Salpeter equation with a scalar con�nement

was completely invisible here, so that it should be legitimate to compare these

(quasistable) solutions to the experimental meson masses. Reasonable �ts to

the experimental data could be obtained with a scalar as well as with a vector

con�nement. Some moderate deviations in the mass spectra and especially in the

leptonic decay widths, however, indicated the relevance of retardation e�ects and

higher order gluon diagrams in the interaction.

Finally the heavy-light (D and B -) mesons have been investigated in chapter

6 within a simultaneous �t of light and heavy mesons. Analogously to the pre-

vious chapters the interaction kernel was given by a combination of scalar plus

vector con�nement and a residual interaction, i.e. the 't Hooft interaction for

light mesons and the OGE for heavy and heavy-light mesons. The resulting mass

spectra had a quality similar to results found within the nonrelativistic quark

model, whereas the results for the weak decay constants and the two-photon

widths came out much better than the corresponding nonrelativistic results. The

slightly too low Regge trajectory for the light mesons and the di�culties in de-

scribing the leptonic widths again indicated the relevance of retardation e�ects

and higher order diagrams in the interaction as well as the possible relevance of

additional contributions to the con�ning kernel.

Summarizing we found that the Salpeter equation indeed provides a usefull

relativistic extension of the nonrelativistic constituent quark model. The present

thesis therefore should provide an instructive step on the way to more involved

treatments, which might include e.g. a selfconsistent determination of the quark

propagators. Another challenge is the inclusion of retardation e�ects of the inter-

action, thus going beyond the instantaneous approximation applied in the present

thesis.
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Appendix A

Reduction to the Salpeter

equation

For an instantaneous interaction kernel and free quark propagators the BS-

equation (2.5) in the CMS is given by

�

P

(p) =

(�

1

P + p) +m

1

(�

1

P + p)

2

�m

2

1

+ i�

�

Z

d

4

p

0

(2�)

4

[�i V (~p; ~p

0

)�

P

(p

0

)]

(�

2

P � p) �m

2

(�

2

P � p)

2

�m

2

2

+ i�

(A.1)

with P = (M;

~

0), where the notation of chapter 2 is used. The integral over p

0 0

can now be performed. Integrating over p

0

in eq.(A.1) then leads to

�(~p) = �i

Z

dp

0

2�

(�

1

P + p) +m

1

(�

1

P + p)

2

�m

2

1

+ i�

�

�

Z

d

3

p

0

(2�)

3

[(V (~p; ~p

0

)�(~p

0

)]

(�

2

P � p)�m

2

(�

2

P � p)

2

�m

2

2

+ i�

(A.2)

Note that only the propagators depend on p

0

. It is now usefull to introduce

�

�

i

(~p) =

!

i

�H

i

(~p)

2!

i

=

1

2!

i

 

!

i

�m

i

�~�~p

�~�~p !

i

� (�m

i

)

!

with !

i

=

q

m

2

i

+ ~p

2

and H

i

(~p) = 

0

(~~p + m

i

). The block matrix notation for

�

�

i

refers to the standard Dirac representation for the -matrices. Since

H

i

(~p) �

�

i

(~p) = �!

i

�

�

i

(~p) (A.3)

�

+

i

(~p) �

+

i

(~p) = �

+

i

(~p) (A.4)

�

�

i

(~p) �

�

i

(~p) = �

�

i

(~p) (A.5)

�

+

i

(~p) �

�

i

(~p) = 0 (A.6)
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the �

�

i

(~p) can be interpreted as projectors on positive and negative energy states.

With the help of these projectors the propagators can be written as

p

1

+m

1

p

2

1

�m

2

1

+ i�

=

 

�

+

1

(~p

1

)
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� !
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�

�
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(A.7)
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0

(A.8)

After inserting p

1

= �

1

P + p; p

2

= �

2

P � p and P = (M;

~

0) we thus have four

poles in p

0

given by

p

0

A

= ��

1

M + !

1

� i� (A.9)

p

0

B

= ��

1

M � !

1

+ i� (A.10)

p

0

C

= +�

2

M � !

2

+ i� (A.11)

p

0

D

= +�

2

M + !

2

� i� (A.12)

(compare �gure (A.1) ). The p

0

integral may now be computed using the residue

A D

CB

Figure A.1: Position of the poles in the complex p

0

plane for the low binding case

with small p=m

theorem by closing the contour in the upper half plane encountering the poles

p

0

B

; p

0

C

. Making use of �

�

2

(~p) 

0

= 

0

�

�

2

(�~p) one obtains the (full) Salpeter

equation as given in eq.(2.9), i.e.
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which is independant of the choice for �

1

; �

2

.
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Appendix B

Lorentz transformation

properties

B.1 Special Lorentz transformations

Let � be a special Lorentz transformation and g be the corresponding element of

the covering group SL(2; C), given by

g �(x) g

y

= �(�x) (B.1)

with �(x) = x

�

�

�

and (�

�

) = (1; ~�). The transformation matrix S

g

for Dirac

spinors in the Weyl representation is then given by

S

g

=

 

g 0

0 (g

y

)

�1

!

(B.2)

With the transformation matrix

B =

1

p

2

 

1 1

1 �1

!

(B.3)

we can use S

D

g

= BS

W

g

B

�1

to transform S

g

into the standard Dirac basis em-

ployed in this work. The result reads

S

g

=

1

2
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�1
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(B.4)

Note that the relation �

�

�



�

= S

�1

g



�

S

g

is automatically ful�lled. For a boost

� with � (M;

~

0) = P and P

2

=M

2

one has explicitely

g =

�

�

�

P

M

��

1

2

=

s

M

2(M + P

0

)

�

1 + �

�

P

M
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(B.5)
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and for a 3-dimensional rotation � = R one has g = u 2 SU(2) and therefore

S

u

=

 

u 0

0 u

!

(B.6)

in the Weyl basis as well as in the standard Dirac basis.

The transformation of a Dirac �eld operator 	(x) is given by

U
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	(x)U

�1
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�1
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	(�x) (B.7)
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with U

g

being a unitary operator. Consider a state with momentum P and

P

2

= M

2

, total angular momentum J and 3-component M

J

normalized as
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where D

J

M

0

J

M
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(u) is a Wigner D-function with D
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is the Wigner rotation.

From the de�nition of the BS-amplitude in chapter 2 one can see by inserting

the unity operator 1 = U
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The BS-equation is compatible with this transformation law for covariant kernels.

B.2 Angular decomposition of the 2�2-amplitudes

Let � = R be a 3-dimensional rotation and g = u be the corresponding matrix

2 SU(2). With eq.(B.10) and the block matrix structure of � given in eq.(2.12)
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be the spin matrix of the two quarks coupled to the total spin S. De�ne

'
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, i.e.
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or explicitely

'

0 0

=

1

p

2

 

1 0

0 1

!

; '

1 1

=

 

0 �1

0 0

!

(B.13)

'

10

=

1

p

2

 

1 0

0 �1

!

; '

1�1

=

 

0 0

1 0

!

(B.14)

Then eq.(B.11) implies that we can decompose �

++

; �

��

as

�
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(~p) =

X

LS

R
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(p) [Y

L

(


p

)
 '
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]
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��

(~p) =

X
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(p) [Y

L
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)
 '

S

]
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(B.15)

with the spin S and the orbital angular momentum L coupled to J . We assume

that the BS-kernel allows choosing R

(+)

LS

(p) to be a real function. The sum goes

over all values L;S that are compatible with parity and charge parity of the

bound state, see below.

B.3 Parity transformation

The Dirac �eld operator 	(x) and the bound state with parity number �

P

= �1

transform under parity transformation

^

P as

U
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	(x)U

�1

P
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0

	(

^

Px) (B.16)
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(B.17)
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P

jK;J;M

J

; �

P

i (B.18)

where K is the momentum of the bound state and

^

P x = (x

0

;�~x). For the

BS-amplitude this implies

�

K

(p) = �

P
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�
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PK

(

^
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(B.19)

For the block matrix structure one �nds
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(B.20)

To be compatible with the angular decomposition eq.(B.15) we �nd the well-

known condition �

P

= (�1)

L+1

.
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B.4 Charge conjugation

Let jf

1

�

f

2

; P i be a q�q-bound state with avors f

1

and f

2

and momentum P . The

charge conjugation then acts like

U

C
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=

X
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t

	

+
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(x) (B.21)
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�

(x) (B.22)
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C
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; P i = jf

2

�
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1

; P i (B.23)

and we �nd for the BS-amplitude
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) (B.24)

with the matrix S

C



0

given in the standard basis as

S
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(B.25)

Making the choice �

1

= �

2

= 1=2 implies
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with

~

�

++

= �i�

2

(

t

�

++

) i�

2

. With the angular decomposition eq.(B.15) and

~'

S q

= (�1)

S

'

S q

one �nds

h
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(B.27)

For an eigenstate jP; �

C

i of the charge conjugation we have f

1

= f

2

and U

C

jP; �

C

i =

�

C

jP; �

C

i which implies the well-known condition �

C

= (�1)

L+S

.

To investigate the compatibility of eq.(B.24) with the BS-equation we use

the relation S

F

f

i

(p

i

) = �(S

C



0

)

t

S

F

f

i

(�p

i

) (S

C



0

) for the fermion propagator. Let

�

f

1

f

2

(p) be a solution of the BS-equation with f

1

being the quark avor and f

2

being the antiquark avor. It is straightforward to show that �

f

2

f

1

(p) as given

in eq.(B.24) is a solution of the BS-equation with interchanged avors, if the

interaction kernel transforms appropriately under charge conjugation. For the

Salpeter equation this implies that the solution  

f

1

f

2

and the solution of the

equation with avors interchanged  

f

2

f

1

are connected by

 

f

1

f

2

(~p) = �S

C

t

 

f

2

f

1

(�~p)S

C

(B.28)
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Appendix C

The 't Hooft interaction

C.1 The Lagrangian

As shown by Shifman, Vainshtein and Zakharov [62] the contribution of an

instanton-antiinstanton con�guration to the e�ective quark Lagrangian for three

quark avors u; d; s is given by

�L =

Z
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with �

��

:= [

�

; 

�

] =2 and q

iL

:=

1

2

(1 + 

5

)q

i

, q

iR

:=

1

2

(1 � 

5

)q

i

being the

projections of the quark Dirac operators q

i

onto left and right handed components.

Furthermore i = 1; 2; 3 = u; d; s denotes the avor degrees of freedom, m

0

i

the

corresponding current quark masses, �

a

(a = 1; : : : ; 8) are the color matrices and

f

abc

, d

abc

are the standard SU(3) structure constants de�ned by the commutator

[�

a

; �

b

]

�

= 2i f

abc

�

c

and the anticommutator [�

a

; �

b

]

+

=

4

3

�

ab

+ 2 d

abc

�

c

. For

the other notations compare chapter 4.2.2. The 't Hooft interaction leads to

spontaneous chiral symmetry breaking as can be seen by normal ordering L =
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L

0

+�L with respect to the physical QCD vacuum, where L

0

=

P

3

j=1

(i�q

j



�

@

�

q

j

�

m

0

j

�qq) is the free quark Lagrangian. Using the Wick theorem one �nally obtains

eq.(4.3), i.e.

L = k +

3

X

j=1

: (i�q

j



�

@

�

q

j

�m

j

�qq) : +�L(2) + �L(3) (C.2)

with the di�erent terms given in chapter 4.2.2. The two-body term �L(2) will

be investigated in more detail also in the following section.

C.2 The interaction between two quarks

After normal ordering the two body interaction term is given by

�L(2) = g

e�
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with g

e�

(i) given in eq.(4.8). One can transform the two body force into a

more transparent form using the notation "

ijk

; i = u; d; s with "

uds

= 1. Insert

q

i L;R

= (1� 

5

)=2 q

i

and use the relations
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with � = diag(�; �) where the notation (A �B)

ij;kl

= A

ik

B

jl

has been used.
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with �

S

; �

F

and �

C

being exchange operators in spin, avor and color de�ned

as �

ij;kl

= �

il

�

jk

. On the antisymmetric tensors one has �

S

�

F

�

C

= �1 which

can be used to eliminate the spin dependence leading to eq.(4.7), i.e.
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C.3 The 't Hooft vertex

The two-body 't Hooft interaction vertex in lowest order is determined by the

�rst order term of the 4-point Green's function [12]
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(C.7)
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has been used (for i � 4 up to now). Here s

i

denotes Dirac indices, c

i

and f

i

stand for color and avor indices. We use the Wick theorem and the notation
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Insert this equation into eq.(C.7) and rename the summation indices for the

second term as 8 $ 7, for the third term as 5 $ 6 and for the fourth term as

5$ 6; 8$ 7 to �nd
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to obtain
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(see also Fig.4.1). The two terms in eq.(C.9) represent the direct and the crossed

diagram. For quarks and antiquarks one has to consider the 4-point function
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� 0

E

= �G
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14 32

i.e. the quark-antiquark diagramms are obtained from the quark-quark dia-

gramms by exchanging 2 $ 4 and by changing the sign appropriately (see

Fig.4.2).
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Appendix D

Calculation of the matrix

elements

D.1 Expectation values

In order to compute the matrix elements present in eq.(2.58) it is useful to rewrite

h j i and h jH i in terms of �
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and �

��

using eq.(2.14). We �nd
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for the norm. The matrix elements of H can be split as
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3

. The basic formula for the calculation of the kinetic energy

and con�nement matrix elements is given by
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where the prime indicates the dependence on ~p

0

. To compute the kinetic energy

term eq.(D.3) set ~p

0

= ~p in this equation.

For the interaction term eq.(D.4) we investigate the following contributions:
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D.1.1 Scalar con�nement

From the scalar con�ning kernel eq.(4.2) one has
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the expression for tr
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is obtained by changing the sign of the �rst two

terms (�
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in eq.(D.5).

D.1.2 Vector con�nement

From the vector con�ning kernel eq.(4.1) one has
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and eq.(D.5) can be applied directly. Note that a covariant form to write the

vector con�nement kernel is
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holds as is required to rewrite the normalization condition for �.

D.1.3 One Gluon Exchange

From the OGE-kernel in the Feynman gauge eq.(5.15) one has
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i
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The �rst term has already been investigated in Sec.D.1.2. For the second term

we calculate

�tr (�

y
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~ �

0

~

0

) = (D.12)

= tr [ (�
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)
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In the Coulomb gauge (see eq.(5.5)) one has to replace 

�


 

�

in eq.(D.11) by



0


 

0

�

1

2

[~ 
 ~ + (~x̂)
 (~x̂) ]

with x̂ = ~x=j~xj (we don't specify the operator x̂ in momentum space since the

corresponding matrix elements will be evaluated in coordinate space). The only

new term to be considered here is the third one. Then �tr [�

y



0

(~x̂)�

0

(~x̂) 

0

]

is obtained by replacing ~� with ~�x̂ in eq.(D.12).

D.1.4 't Hooft interaction

From the 't Hooft kernel eq.(4.24) we �nd (omitting avor indices)
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) (D.14)

Using the decomposition eq.(B.15) and tr'

S q

=

p

2 �

S 0

one obtains
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p
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(D.15)
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(D.16)

We further see that

tr ('

S q

~�~p) = tr (~�~p '

S q

) =

p

2 �

S 1

p
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(D.17)
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with the spherical components p

q

=

q

4�=3 p Y

1 q

(


p

). We �nd
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D.2 Matrix elements

The expressions obtained above can now be used to compute the required matrix

elements. In order to calculate e.g. N

++

ij

= he

(+)

i

je

(+)

j

i one has to replace in

eq.(D.1) (�

++

)

y

by E

y

i

and �

++

by E

j

setting (�

��

)

y

= 0 and �

��

= 0. In the

following we will use the notation
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3
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i
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n
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j

(p) f(p) (D.20)

for the radial integrals between the basis states. These integrals can be e�ec-

tively computed numerically using e.g. Gauss quadrature routines. According to

eq.(D.2) we write H

ss

0

ij

= T
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0

ij

+ V

ss

0

ij

with V
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)
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)

ss

0
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.

D.2.1 Normalization matrix elements

For the normalization matrix elements we �nd from eq.(D.1)

N
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N
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= N
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= 0 (D.22)

D.2.2 Kinetic energy matrix elements

In order to evaluate the angular momentum structure of matrix elements the

relation (�i�

2

)~� (i�

2

) = �

t

~� is quite useful. De�ne the q�q spin matrix as �

S q

=

'

S q
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2

and use s = ~�~p. Then one can write e.g.
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with s

i

= 2

~

S

i

~p where

~

S

1

is the spin operator acting on the �rst quark and

~
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2
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the second quark. It is useful to de�ne
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Using the Wigner-Eckart theorem and the notation
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The kinetic energy matrix elements are now given by
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with S

12

(i; j) = S

12

(L

i

; S

i

; L

j

; S

j

; J).

D.2.3 Scalar and vector con�nement matrix elements

The con�nement matrix elements can be computed by inserting two complete

sets of basis functions like

hijf
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(~p)V (r) f
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where the matrix element of V can be evaluated in coordinate space. One �nds

for the scalar con�nement matrix elements
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denotes the Fourier

transformed basis functions and V
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c

+ b

c
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For the vector con�nement matrix elements one only has to change the sign

of

P

g;h

in the two equations above.

D.2.4 OGE matrix elements

Analogously to the con�nement matrix elements one can evaluate the OGE ma-

trix elements by inserting complete sets of basis functions. One �nds for the ~
~

-term
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(i; j). With the terms given above we �nd for the OGE matrix elements in the
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where (V



0

G

)

��

ij

is of the same form as the vector con�nement matrix elements.
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D.2.5 't Hooft matrix elements

The 't Hooft matrix elements with the regularizing potential can be computed

analogously to the con�nement matrix elements. In the unregularized case �! 0

corresponding to V

F

reg

(r)! �(~r) only L = 0 basis states contribute to (gjV

reg

jh).

Consistently only L = 0 states will be taken into account for (gjV

reg

jh) also for

� > 0 so that the angular selection rules are not changed by the regularization.

The result for L = S = 0 reads
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and for L = S = 1
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(D.36)

This result shows that the 't Hooft interactions a�ects only mesons with J = 0

and L = S = 0 (i.e. pseudoscalar mesons with J

�

P

= 0

�

) or L = S = 1 (i.e.

scalar mesons with J

�

P

= 0

+

). In the nonrelativistic limit the contributions to

the scalar mesons vanish.
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Appendix E

The OGE potential for small

distances

In this section we will analytically perform the Fourier transformation of the

OGE kernel into coordinate space for r � �

�1

QCD

as given by
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The cuto� j~q

low

j � �

QCD

has been introduced to keep the variable j~qj in the high

momentumrange where the QCD formula for the running coupling constant is ap-

proximately valid. The other cuto� j~q

high

j has been introduced for formal reasons

as shown below. It is chosen according to the condition j~q

high

j r � 1=(�

QCD

r).

We mainly follow the way outlined by Lucha et.al. [32] who treated the �rst

order case, i.e. B = 0. Using x = j~qj r and a = �

QCD

r � 1 we can write
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with x
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= j~q
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j r � a and x
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= j~q
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j r � 1=a. Rewrite
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Since x � x

low

� a and x < x

high

� 1=a we have j lnx= ln aj � 1 so that
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For the ln ln -term we further use

ln (ln(x=a)

2

) = ln (2 ln x� 2 ln a) � ln(�2 ln a)� lnx= ln a (E.5)
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so that we can write
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It is a good approximation to neglect terms � (lnx= ln a)

2

in the following, so

that
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In the limit r ! 0 one has a ! 0, so that the limits x
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! 0 and x
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! 1

can be performed. Using the integrals
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with the Euler-Mascheroni constant  = 0:577215 : : : and using
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we �nd
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The term � 1=(ln a)

3

can be neglected to a good approximation and we �nally

obtain eq.(5.12), i.e.
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